#### The UK e-Infrastructure Landscape Dr Susan Morrell Chair of UKRI e-Infrastructure Group



Met Office









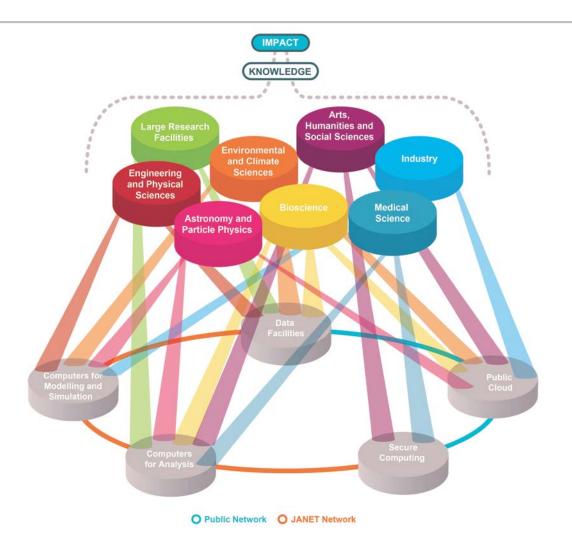
EPSRC

Pioneering research and skills





Jisc



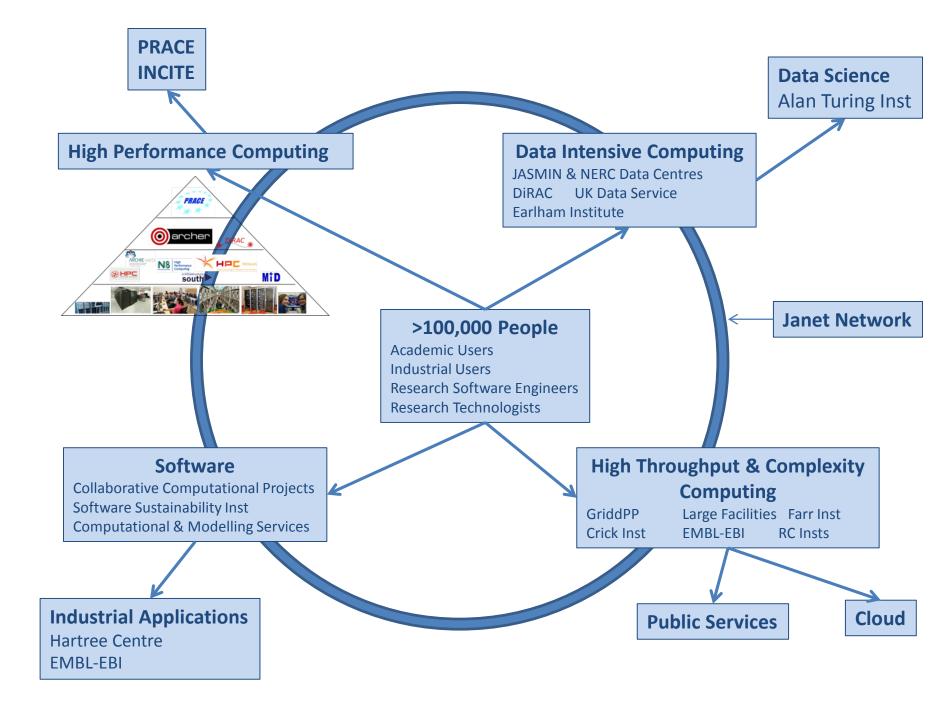

## E-Infrastructure is a Research Tool (not an IT system)

- E-Infrastructure is essential for carrying out research
  - Ubiquitous
  - Underpins most industrial sectors
  - Better, more efficient research
- Optimisation, modelling, simulation
- Data from large experiments and observation: analysis
- Social, medical, health data: analysis
- Real-time data smart devices
- New and emerging areas: interface between data and computing

- Requirements:
  - Diverse workflows, each optimised for efficiency
  - Range of technologies
  - One size cannot fit all
- Types of user:
  - Expert users need access to competitive infrastructure to tackle increasingly complex problems: complex simulations and calculations, multi-scale modelling, data analysis
  - New fields now using computational techniques for the first time – large numbers of `non-experts`

### Diversity, Heterogeneity, Complexity




### Diversity, Heterogeneity, Complexity

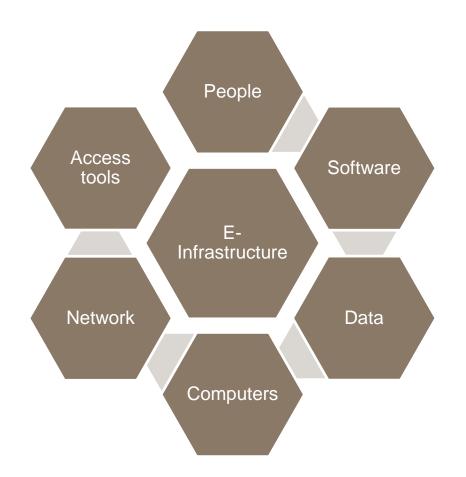
- Geographical diversity
- Physical network Janet
- Virtual networks of practice
  - Communities
  - Collaborations
- International dimension



## Types of Computing

| Туре                               | Characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Throughput<br>Computing       | <ul> <li>Computes huge numbers of the same simple workflow</li> <li>Link with experimental equipment e.g. LHC, bioinformatics, images and spectra from medical scanners, telescopes, large facilities, cryo-EM etc.</li> <li>Increasingly data intensive as the measurements are increasing in number and accuracy</li> </ul>                                                                                                                                        |
| Secure Computing                   | <ul> <li>Where there are strict requirements governing the access to and handling of the data</li> <li>Medical and social science domains</li> </ul>                                                                                                                                                                                                                                                                                                                 |
| Operational<br>Computing           | • Where things have to be done in a particular time window to a particular performance level e.g. weather forecasting                                                                                                                                                                                                                                                                                                                                                |
| High Performance<br>Computing      | <ul> <li>This requires high performant CPU, Interconnect and file system performance. Job sizes run from 32 to 100,000 cores</li> <li>Used to model weather, climate, materials properties, aerodynamics, chemical properties and kinetics, transport systems, environmental systems, structure of subatomic particles, planet formation</li> </ul>                                                                                                                  |
| High Performance<br>Data Analytics | <ul> <li>Use of High Performance Computing techniques applied to data analytics, data modelling and data fitting.</li> <li>Characterised by the performance of multiple distinct activities</li> <li>Examples: the fitting of weather/climate/engineering hydrodynamical/chemical models to measurements, the exploration of observed data to produce new data such as structures etc. which require the new generation of Al/machine learning techniques</li> </ul> |






#### **Tier 2 Centres**

- Broadens access to researchers new to HPC;
- Provides access for industry;
- Encourages skills and expertise in software engineering;
- Is integrated with the HPC ecosystem across the UK, both vertically and horizontally: a truly national Tier 2 layer
- Provides a diversity of computing architectures

| Centre             | Туре                   |
|--------------------|------------------------|
| Cirrus (Edinburgh) | Standard cluster       |
| HPC Midlands Plus  | Standard cluster       |
| MMM                | Standard cluster       |
| Isambard (Bristol) | ARM                    |
| Peta-5 (Cambridge) | Knights Landing<br>GPU |
| Jade (Oxford)      | GPU                    |

## Not just computers



- Seven out of 10 UK researchers report that their work would be impossible without research software
- Attributes: sustainability, reproducibility, reusability, quality, trust...
- Recognition as a research output
- EPSRC Software as an Infrastructure Strategy
- Funding:
  - Software Sustainability Institute (EPSRC, BBSRC, ESRC)
  - Collaborative computational projects (EPSRC, BBSRC, MRC)
  - Computational Science Centre for Research Communities (CoSeC) (EPSRC)
  - Embedded CSE support for ARCHER users (EPSRC, NERC)
  - BBSRC Tools and Resources Development Fund
  - EPSRC Software for the Future calls

- RSE Association:
  - Many hundreds of members
  - Annual conference
  - International impact
- EPSRC RSE Fellows:
  - Leadership and advocacy
- Research Software Groups in universities

## **Research Software Engineer Fellows**

| Name                   | Organisation             | Title                                                                                    |
|------------------------|--------------------------|------------------------------------------------------------------------------------------|
| lan Bush               | University of Oxford     | Software Engineering - In Support of the Exascale                                        |
| Christopher Woods      | University of Bristol    | Sustainable RSE Careers for Sustainable Software Development                             |
| Paul Richmond          | University of Sheffield  | Accelerating Scientific Discovery with Accelerated Computing                             |
| Louise Brown           | University of Nottingham | Research Software Engineering Fellowship - Software for Textile Modelling and Simulation |
| Oliver Henrich         | University of Edinburgh  | EPSRC Research Software Engineer Fellowship                                              |
| Christopher Richardson | University of Cambridge  | Expressive Finite Element Modelling for HPC: enabling advanced techniques for scientists |
| Mike Croucher          | University of Sheffield  | Building Capability and Support in Research Software                                     |
| Phil Hasnip            | University of York       | Transforming Research-Oriented Software Engineering                                      |
| L Muresan              | University of Cambridge  | Computational microscopy in Cambridge Advanced Imaging Centre                            |
| Jo Leng                | University of Leeds      | Research Computing and Imaging                                                           |
| Jeremy Cohen           | Imperial                 | A Research Software Engineering Hub for Computational Research                           |



## Skills and Training

- Software carpentry, data carpentry SSI
- RSE teams
- Centres for Doctoral Training
- CCPs
- CoSeC
- Training provided by infrastructures and centres e.g. ARCHER, ELIXIR, EMBL-EBI etc.

## UKRI Infrastructure Roadmap Objectives

Create a long-term (approximately 2030) research and innovation infrastructure roadmap based on a picture of existing UK infrastructure (including key international facilities in which the UK participates), future requirements (research, economic and social), and resulting investment priorities.

In addition

- Identify future research and innovation infrastructure capability priorities ;
- Identify opportunities for increasing inter-connectivity;
- Support development of UKRI's overall long-term investment plan;
- Promote the UK capabilities as a global leader in research and innovation;
- Set out the trajectory and major steps needed to reach the long term vision

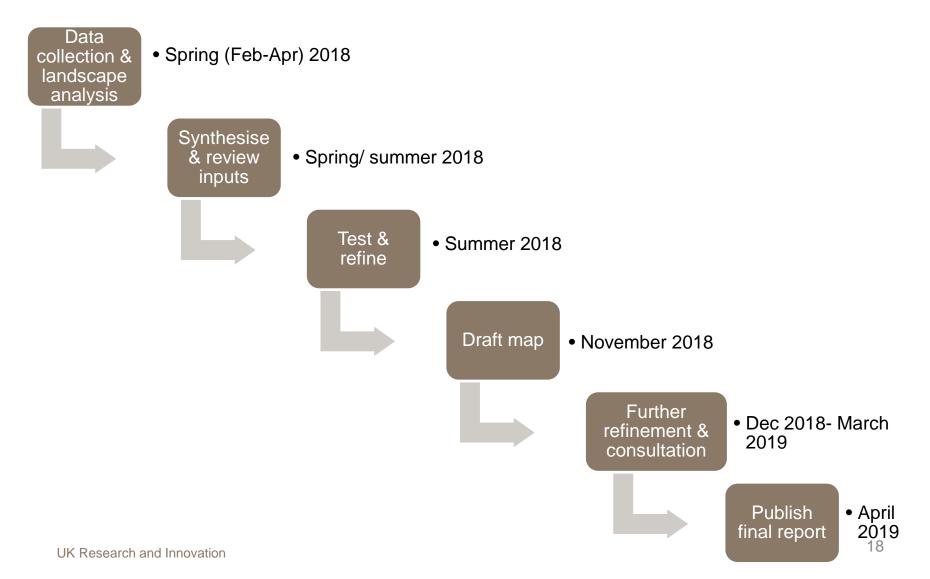
## What are R&I infrastructures?

Facilities, resources and services that are used by the research and innovation communities to conduct research and foster innovation in their fields. They include: major scientific equipment (or sets of instruments), knowledge-based resources such as collections, archives and scientific data, e-infrastructures, such as data and computing systems and communication networks and any other tools that are essential to achieve excellence in research and innovation.

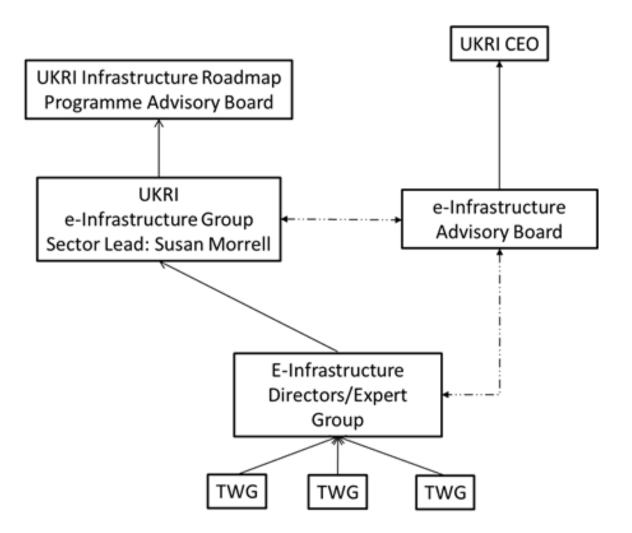
# Scope & definition of infrastructure

The programme will focus on infrastructures which receive significant public funding.

- **Purpose:** Research and Innovation infrastructures are facilities, resources and services used by the research and innovation community to conduct or facilitate excellent research and innovation.
- Accessibility: Pooling effort can enhance excellence in highlydemanding fields where economic and research drivers require a collaborative approach. An infrastructure must provide access, resources or related services to the wider, UK research and innovation community outside the infrastructure institution itself.
- Scale and longevity: An infrastructure must have some degree of international/ national importance and existing or planned long term sustainability


# Scope & definition of infrastructure

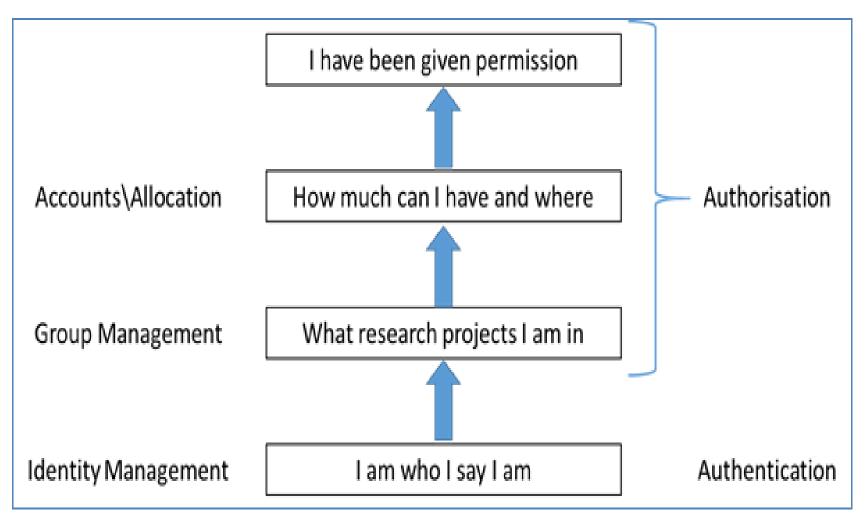
Following the approach taken by ESFRI the roadmap will be structured in the following sectors:


- Biological Sciences, health and food
- Environment
- Energy
- Physical sciences & engineering
- Social sciences, arts and humanities
- Computational & e-infrastructures

Recognise we will also need to capture cross cutting themes and many infrastructures will contribute to more than one sector






## Governance



# Cloud strategy

- Across many research domains, use of cloud technologies is part of normal business
- Strategies developed in various domains:
  - In response to in-depth understanding of user requirements and technology developments
- Agenda well-understood and being actively managed
  - Providing the e-infrastructure the researchers require with the technical capabilities needed at the right time and right cost
- Now need to bring this knowledge together and create an integrated strategy ready for UKRI via eAB
- Aiming for May

# AAAI in a nutshell



# Benefits

- Opens door to integration across einfrastructures
  - Single Sign on: Removes a major barrier to access for users
  - Enables hardware to be shared across domains
  - From a service provider perspective this encourages aggregation and pooling of resources
  - Allows cloud and data services to work effectively, efficiency and appropriately
    - You know who I am, what I can do, how I'll be measured, and where I live.....
  - Could form an element in the roadmap?



- Funding: comes in clumps, seemingly randomly, rather than consistently and in a sustained way
- Silos: much work done over the last five years to break these down. Much stronger collaboration between RCs, and between einfrastructure directors. UKRI gives an opportunity to build on this.
- User industry: challenging to engage Innovate UK.
- Data: huge agenda, no one owner.
- Al/machine learning: what to do?



What can we do for you?

- Provide ideas and input for agenda items
- Provide strategy documents, think pieces for discussion
- Provide a single point of access to the main e-infrastructures



- Provide constructive input on the developing outputs from the roadmap, acting as sounding board/challenge panel
- Endorse strategies, recommendations coming from expert group via UKRI group
- Act as advocates with UKRI, government on importance of e-infrastructure in research and innovation
- Help us make the case for funding and investment