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Abstract

Recently, accurate incompressible SPH (ISPH) codes have become more popular now that the numerical stability
can be ensured, particularly for free-surface flows. The parallel efficiency of the SPH software applications requires
effectively minimising communications between processors and good load balancing. Constructing neighbour list and
solving pressure Poisson equation are two critical points in terms of the high performance of parallelised ISPH codes.

With these motivations, this project proposed to implement an alternative partitioning and dynamic load balancing
approach by using Hilbert space filling curve to decompose the cells with number of particles in each cell as the cells
weight functions. This approach can distribute particles evenly to MPI partitions without losing spatial locality which
is critical for neighbour list searching. As a consequence, the sub-domain shapes become irregular. Unstructured
communication has also been introduced to deal with complicated patterns of MPI communication between the sub-
domains. Solving sparse linear equations for pressure Poisson equation is one of the most time consuming parts in
ISPH, ISPH uses multigrid preconditioners and solvers from the open-source library PETSc. The particles have been
reordered so that insertions of values into the global matrix become local operations without incurring extra commu-
nications, which also has the benefit of reducing the bandwidth of coefficients matrix. We demonstrated that domain
decomposition with a space filling curve can efficiently deal with irregularly distributed particles. The method can
perfectly match the nature of non-uniform spatial distribution of SPH particles during simulations, which also offers
capability of developing parallel adaptive SPH within an ISPH toolkit. The performance analysis and results show the
promising efficiency with 10K+ cores.

The following list highlights the major developments:

• Domain decomposition and dynamic load balancing kernels with 3D Hilbert space filling curve method using
Zoltan Distributed directory utilities.

• Using bounding box approach to reduce the memory footprint of partition mapping kernel and also reduced the
overhead of Hilbert SFC itself because the number of rules of traversing along the SFC has increased from 4
in 2-D to 12 rules in 3-D, which may cause large overheads in SFC domain decomposition if the number of
domain decomposition objects are huge.

• In the halo exchange kernels, we have optimised nbormap() kernel so that it can automatically switch between
2D and 3D(number of neighbour cells are different between 2D and 3D).

• All the above optimisations have been verified and validated with still water and 3D dry dam break test cases
with up to 100 million particles

• The neighbour list searching kernels using preconditioned dynamic vector approach and the linked list approach
have been implemented. These implementations particular solved the added difficulties in parallel like the
memory operations for the unknown number of particles due to particles movement and dynamic generated
particles for mirror boundary conditions.
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• The particles reordering subroutines has been implemented according to the cells space filling curve order. This
current offers 5% ∼ 8% performance improvements though further optimisation need to be done to reduce the
overhead of space filling curve ordering.

• The new Yale sparse matrix format have been replaced with PETSc CSR format(AIJ and MPIAIJ) which re-
duces the memory footprint and avoids the expensive memory copy.

• The matrix assembly kernels using Morris and Schwaiger have been re-engineered to reduce accesses to PETSc
memory space and SPH kernel calculations, eg: fusion loops of matrix assembly and right hand side which can
reduce expensive redundant SPH smooth kernel calculations.

• The parallel I/O has been implemented using the H5hut. The implementation based on the unreleased version
of H5hut-1.99-15rc1 provided by Dr. Achim Gsell from PSI, Switzerland.

– This implementation has resolved the poor performance of I/O which dominated by dumping large amount
of data generated with the large scale simulations which has to be run over many time steps.

– The output file using H5hut can also be directly loaded in parallel by visualization tools like VisIt and
ParaView which greatly facilitated the post-processing.
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1. The ISPH eCSE project

The major challenges caused by the increasing scale and complexity of the current petascale and the future exas-
cale systems is imposing a strong evolutionary pressure on numerical algorithms and software ecosystem. Smoothed
Particle Hydrodynamics(SPH) codes have been effectively parallelised using domain decomposition methods, imple-
mented with libraries such as MPI for a long time. However, efficiently maintaining geometric locality of particles
within processors with dynamic load balancing arising from solving a complex, highly nonlinear and distorted flow
still requires substantial improvement.

The ISPH eCSE project mainly comprised of four work packages(refered to as WP1, WP2, WP3, WP4). WP1
is optimization the 3-D domain decomposition kernel and halo exchange kernel modifications from 2-D version of
ISPH, WP2 is optimising 3-D neighbour list searching kernels, WP3 is optimisation of 3-D pressure Poisson solver.
WP4 is Parallel I/O with H5hut.

The remaining part of this report is organised as follows: In the next section we describe the optimisation on the
domain decomposition and dynamic load balancing methods and then the Section 3 describes the basic data structures
of neighbour list searching and their optimisation. The Section 4 explains how we solve pressure Poisson equation
with PETSc solver and the Section 5 presents the implementation of parallel I/O with H5hut. Finally, Section 7 are
conclusions and the future work.

2. WP1: Optimisation the 3-D domain decomposition kernel and halo exchange kernel modifications from 2-D
version of ISPH

Following from the 2-D optimisation for ISPH[5], for 3-D ISPH, we have continued to use the Hilbert Space
Filling Curve(HSFC) method for domain decomposition and dynamic load balancing ISPH. The basic idea of domain
decomposition along SFCs is to reduce a multidimensional domain decomposition problem to a one-dimensional
splitting problem. This holds for both 2-D and 3-D domain decomposition. Fig. 1 shows the advantage of using SFC
method to perform domain decomposition for 3-D complex fluid, the method we use here does not require extra effort
to deal with trade-off between dynamic load balancing and data locality.

However, the number of rules of traversing along the SFC has increased from 4 in 2-D to 12 rules in 3-D, which
may cause large overheads in SFC domain decomposition if the number of domain decomposition objects are huge.
For those simulations where the number of cells have the same order magnitude with the number of particles, keeping
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Figure 1: 3-D domain decomposition with HSFC with 8 MPI Tasks, different colours represent different partitions

and updating such a global mapping is very expensive. A minimal memory footprint approach is required for such a
mapping. Hence, we employ a bounding box approach to manage the cells’ locations after data migrations or to make
information globally accessible. Alternatively, this bounding box approach can further reduce the memory footprint
and improve MPI efficiency of mapping kernels. The number of bounding boxes will be determined by number of
cells and number of partitions, hence, the size of bounding box should be small compared with the number of cells.
Once the number of bounding boxes is fixed, we then use the number of particles in each bounding box as its weight
function, and using SFC to decompose bounding box. This should be able to balance automatically the number of
particles in each partition and also reduce the memory footprint of mapping kernels. The extra added benefit is keeping
the run-time cost of the SFC domain decomposition kernel to minimum.

As the data layout used in 2-D and 3-D ISPH are very similar, the parallel data management layer can be shared
between 2-D and 3-D. Though the number of neighbour cells increased from 8 in 2-D to 26 in 3-D, we can still use
the common function nbormap (see Pseudocode. 1) to calculate each cell’s neighbour cell’s id once given the cell’s
global id. The parameter nbors can be switched between 2-D ( f ull2d nbors) and 3-D ( f ull3d nbors) which can be
set at the beginning of the simulation. Although this approach has greatly facilitated the parallel data management
for both 2-D and 3-D, it has one drawback. The Pseudocode 1 only covers the situation that the cell with all the
neighbouring indices exist and are actually neighbours. It cannot cover the two boundary cases, e.g.

• The returned list of nbormap() are in bounds but not an actual neighbours. This is harmless because none of
the particles in those cells lie within the smoothing kernel cutoff. It wastes some computation but not enough to
justify complicating the code to avoid those cells.

• The neighbour ids in the returned list of nbormap() are out of bounds. This causes illegal memory access.
Fortunately, this is easy to detect and handle. If the returned neighbour id is outside the valid range of cell ids,
the code skips that id and furthermore all subsequent neighbour ids will also be invalid (because the table orders
them that way), so there is no need to check any subsequent ids in the list.

Pseudocode 1: Neighbour Cells Map Function

1 ! ! g i d : c e l l s g l o b a l i d
f u n c t i o n nbormap ( g i d )

3 i n t e g e r ( i k i n d ) , i n t e n t ( i n ) : : g i d
! ! n b o r s v a l u e c o u l d be f u l l 3 d n b o r s o r f u l l 2 d n b o r s

5 i n t e g e r ( i k i n d ) , d imens ion ( n b o r s ) : : nbormap
! ! t o t a l number o f c e l l s i n xy p l a n e

7 i n t e g e r ( i k i n d ) : : pxy

9 ! ! ncx : number o f c e l l i n x d i r e c t i o n
! ! ncy : number o f c e l l i n y d i r e c t i o n
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11 pxy=ncx ∗ ncy

13 ! ! t h e bot tom p l a n e
! ! SW c e l l

15 nbormap ( 1 ) =gid−ncx−1−pxy
! ! South c e l l

17 nbormap ( 2 ) =gid−ncx−pxy
. . . . . .

19 ! ! NE c e l l
nbormap ( 9 ) =g i d+ncx+1−pxy

21

! ! t h e midd le p l a n e
23 ! ! SW c e l l

nbormap ( 1 0 )=gid−ncx−1
25 . . . . . .

nbormap ( 1 7 )=g i d+ncx+1
27

! ! t h e t o p p l a n e
29 ! ! SW c e l l

nbormap ( 1 8 )=gid−ncx−1+pxy
31 . . . . . .

! ! NE c e l l
33 nbormap ( 2 6 )=g i d+ncx+1+pxy

35 end f u n c t i o n nbormap

3. WP2: Optimising 3-D neighbour list searching kernels

3.1. Basic ISPH algorithm analysis

The basic algorithm of ISPH can be summarised in the Algorithm 1:

Algorithm 1: ISPH Basic Algorithm Description
Read in the particles data, calculate the domain size
Distribute particles with HSFC method.
In each partition
for t = 1→ total number o f timesteps do

Step 1: calculate viscosity term: ν∇2un
i {Loop 1}

Step 2: u∗i = un
i +
(
ν∇2un

i + Fn
i

)
∆t, Calculate u∗i without pressure gradient.

Step 3: ∇ ·
(

1
ρ
∇pn+1

)
i
= 1

∆t∇ · u
?
i , Solve pressure Poisson equation to get pressure Pn+1

i {Loop 2}
Step 4: Get pressure gradient ∇pn+1

i {Loop 3}
Step 5: un+1

i = u∗i −
∆t
ρ
∇pn+1

i , Calculate velocity un+1
i

Step 6: rn+1
i = rn

i + ∆t
(

un+1
i +un

i
2

)
, Particles positions are centred in time

Step 7: δrs = −D′∇C. Shift the particle by Ficks law {Loop 4}
end for

There are four major loops involve using particles neighbour lists(see Algorithm 1 Loop 1-4), where Loop 1,
Loop 2 and Loop 3 are using the same neighbour lists. Due to data dependencies, we cannot merge these loops
together into one loop. And all these loops involve calculation of smoothing kernel gradients, which can be saved
for reuse. However, we have found that performing redundant calculation of smoothing kernel gradients are not
expensive enough to save for reuse in the rest of loops. Even without particles reordering, the single core run-time
costs of performing redundant calculation of smoothing kernel gradient are almost the same as the approach of saving
and reusing approach. This may change when using different smoothing kernels, such as Gaussian smoothing kernel
which requires expensive intrinsic function calculation and the wider particles neighbour lists.
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3.2. Efficient Neighbour list searching

In general SPH software applications, no matter how fast or how highly parallelized the computing system is,
it is evident that simulations with a large number of particles are only possible if an efficient neighbourhood search
algorithm is employed.

Based on the run-time performance, we use cell linked list (CLL) approach [4][10]. The first step is the creation of
a CLL list, all particles should be initially organised in cells. There are several approaches to allocate particles to cells
to construct a neighbour list such as the linked list approach, which has similar performance and memory footprint to
the preconditioned dynamic vector[4].

In parallel, the added complication is the number of particles in each domain is unknown due to:

• dynamic load balancing for particles movement

• boundary conditions, e.g.: mirror particles, which will be generated according to the fluid particles in each
domain

The memory allocation could be very tricky. However, the dynamic vector approach can easily tackle these issues
because of the precalculation step.

3.3. Reordering Particles

The original order of particles are stored following the order of initially given order, eg: wall particles, fluid
particles, and mirror particles. The memory layout does not change during the simulation. Reordering particles
reorganises the data memory accesses so that one can load into the cache with a small subset of a much larger data
set. The idea is then to work on this block of data in cache. By using/reusing this data in cache we reduce the need
to go to main memory (which is much slower than access to cache, and this also helps to reduce demands on memory
bandwidth).

Since ISPH3D neighbour searching is operated according to cells’ neighbours, it is natural to consider ordering
particles according to cells order. In the ISPH3D code, the cells have been ordered on the Space-filling curve, therefore
the particles will also be reordered according to cells Space-filling curve order. As a result, the memory access will
be changed every few timesteps due to reordering and particles moving. And these changes will improve the cache
performance since HSFC keeps data locality. However reorder cells along the HSFC has overhead due to large
number of cells, this currently only be done everything 10 timestep and the reordering current only offers 5% ∼ 8%
performance improvements due reordering overhead. Further optimization need to be done to reduce the overhead of
space filling curve ordering.

4. WP3: Optimisation of 3-D pressure Poisson solver

For the pressure Poisson equation, there are two different methods have been implemented and can be switched
on depending on different applications. Both the left and right hand side of ISPH pressure Poisson equation requires
calculation of kernel gradients, therefore they can be put in the same neighbour loop to reduce the costs of floating
point operations.

In ISPH3D, we employ PETSc software[11] to solve the sparse linear system. While the majority of implemen-
tation are still the same as 2-D[5], we have paid particular attention to reduce accesses to PETSc memory space. For
example, the boundary conditions for the free surface flow of pressure Poisson equation, this has to be done before
the left hand side matrix and right hand side vector are assembled.

PETSc partitions matrices by continuous rows in parallel. While in the ISPH code, each row represents all neigh-
bouring particles of a specific particle, the renumbering matrix has to be employed so that each partition can assemble
its own matrix. The assembly matrix has therefore been implemented row by row, the accesses to PETSc memory
space have been reduced to minimal to reduce the overhead of matrix assembly stage.
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5. WP4: Parallel I/O with H5Hut

SPH simulations running on large high-performance computing systems over many time steps can generate an
huge amount of data for post-processing and analysis. Achieving high-performance I/O for this data, effectively
managing it on disk, and interfacing it with analysis and visualization tools can be challenging, especially for domain
scientists who do not have I/O and data management expertise. The H5Hut[14] library is an implementation of several
data models for particle-based simulations that encapsulates the complexity of parallel HDF5 and is simple to use, yet
does not compromise performance.

H5Hut is tuned for writing collectively from all processors to a single, shared file. Although collective I/O per-
formance is typically (but not always) lower than that of file-per- processor, having a shared file simplifies scientific
workflows in which simulation data needs to be analyzed or visualized. In this scenario, the file-per-processor ap-
proach leads to data management headaches because large collections of files are unwieldy to manage from a file
system standpoint. On a parallel file system like Lustre, even the ls utility will break when presented with tens of
thousands of files, and performance begins to degrade with this number of files because of contention at the metadata
server. Often a post-processing step is necessary to refactor file-per-processor data into a format that is readable by the
analysis tool. In contrast, H5Hut files can be directly loaded in parallel by visualization tools like VisIt and ParaView.

The implementation based on the unreleased version of H5Hut-1.99-15rc1 provided Dr. Achim Gsell from PSI,
Switzerland.

6. Performance Improvement and Analysis

The 3-D dam break with a dry bed has been used in this paper as the benchmark test case. Fig. 2 shows the
pressure contours at t = 0.00, 0.34, 0.58, 1.26. The total number of particles used for the benchmark is around 100
million. The sparse linear solver is using multigrid preconditioner HYPRE BoomerAMG[12] and Krylov subspace
method GMRES. The multigrid preconditioner HYPRE BoomerAMG has two phases, the first phase is setup phase
including selection of coarse grids, creation for the interpolation operators, and the representation of the fine grid
matrix operator on each coarse grid. The second phase is the solving phase containing matrix-vector multiply and the
smoothing operators.

We are using the UK National HPC platform ARCHER, which is Cray XC30 system. ARCHER compute nodes
contain two 2.7 GHz, 12-core E5-2697 v2 (Ivy Bridge) series processors. Each of the cores in these processors can
support 2 hardware threads (Hyper-threads). Within the node, the two processors are connected by two QuickPath
Interconnect (QPI) links. Standard compute nodes on ARCHER have 64 GB of memory shared between the two
processors. The memory is arranged in a non-uniform access (NUMA) form: each 12-core processor is a single
NUMA region with local memory of 32 GB. Access to the local memory by cores within a NUMA region has a lower
latency than accessing memory on the other NUMA region. There are 4544 standard memory nodes (12 groups,
109,056 cores) and 376 high memory nodes (1 group, 9,024 cores) on ARCHER giving a total of 4920 compute nodes
(13 groups, 118,080 cores), providing a total of 2.55 Petaflops of theoretical peak performance.

The efficiency is obtained with the following formula:

S p =
T1

Tp ∗ p
∗ 100.00% (1)

where T1 is the wall time with 1 node, each node comprises 24 Intel E5-2697 cores, Tp is the wall time with p nodes
(p ≥ 1). S p is the statistic generally used to show the code scalability.

Fig. 3a shows the I/O wall time running 10 timesteps, with 97.8 million fluid particles, the total amount of data per
timestep is around 4.1GB, we have experiment with 32-512 archer nodes. The I/O keeps relative constant low costs
with H5Hut I/O.

Fig. 3 shows the overall performance of the ISPH3D running 10 time steps, Fig. 3a gives the wall time of each
components/kernels in the ISPH3D. Fig. 3b gives the efficiency of each components/kernels. The efficiency defined
in Equation 1. The KSPSOLVE gives performance of GMRES, PCSETUP and PCAPPLY gives statistics of Boomer-
AMG’s setup phase and solve phase, MatMult is matrix vector multiplication, MatAssemble is the cost of calculation
of pressure Poisson equation matrix coefficients, the right hand side and assembly to the PETSc memory space for
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later solving. SPH KERS are those kernels mentioned in Algorithm 1 from step 1 to step 7 except step 3 (pressure
solver).

In the Fig. 3a, we can see the majority of the walltime is now spent solving the pressure Poisson equation. The
main costs in the solver are KSPSOLVE (using GMRES) and PCApply which is BoomerAMG’s solver phase. The
other SPH related kernels account very small percentage compared with pressure solver.

In the Fig. 3b shows the scalabilities of each kernel. Firstly, we can see the ISPH kernels are now able to scale
linearly. With up to 12288 cores, it can still achieve 99.04% efficiency. In the PPE solver part, With 12288 cores,
KSPSOLVE and PCAPPLY can still reach more than 60% efficiency. However, the scalability of those relatively
low cost parts, like PCSETUP, MatAssemble becomes worse (only 20% efficiency with 12K cores) when using large
number of cores. They are now become the bottleneck for the scalibility of ISPH3D. These issues need to be further
investigated.

(a) Snapshot at t=0.00s (b) Snampshot at t=0.34s

(c) Snampshot at t=0.58s (d) Snampshot at t=1.26s

Figure 2: The Snapshots for the 3-D Dam break dry bed test case at t = 0.00s, 0.34s, 0.58s, 1.26s

7. Summary and Conclusions

We have investigated the software data structure and algorithms carefully in order to achieve strong scalability
in large-scale systems. In order to reduce memory footprint for mapping particles into different MPI partitions, we
proposed to use bounding box instead of cells themselves as partition objects. This offers rewards of small memory
footprint and reducing run-time overhead of HSFC partition kernels. We also demonstrated that domain decomposi-
tion with space filling curve can efficiently deal with irregular distributed particles like 3-D Dam break with obstacles.

We have analysised the ISPH algorithm in detail, some of those loops can be merged together in order to reduce
extra floating point operations and reducing memory footprint in the meantime, however this may cause issue of
software modularity.

For 3-D simulations, the main cost is now the pressure Poisson solver. We have experimented with multigrid
preconditioner HYPRE BoomerAMG with GMRES. The bottlenecks are the setup phase of preconditioner and the
PETSc matrix assembly. Further investigation is needed to be made in order to clarify the unscalable parts in PC-
SETUP and MatAssemble.
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(a) ISPH3D I/O Performance Analysis

(a) ISPH3D Walltime Analysis

(b) ISPH3D Parallel Efficiency Analysis

Figure 3: Strong scaling results for the whole ISPH3D using up to 512 XC30 nodes (12288 cores).

The code has been benchmarked on the UK National Supercomputing Platform ARCHER, where we have pre-
sented the results of memory efficient implementation for 3-D incompressible SPH, using more than 10,000 cores for
the first time to the best of the authors’ knowledge. We use the 3-D dam break with a dry bed as the benchmark test
case. The final performance analysis and results using around 100 million particles showed the promising efficiency
with 12K cores.
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