

Porting and Enabling Use of the

Community Earth System Model on

ARCHER

Gavin J. Pringle, EPCC

Version 1.0, 24th September, 2015

1 Introduction

The Community Earth System Model (CESM) is a coupled climate

model for simulating the earth's climate system. Composed of four

separate sub-models simultaneously simulating the earth's

atmosphere, ocean, land surface ice and sea ice, and one central

coupler component, CESM allows researchers to conduct

fundamental research into the earth's past, present and future

climate states [1].

This report describes the work undertaken under the embedded CSE

programme of the ARCHER UK National Supercomputing Service [2],

and was entitled “Porting and Enabling use of the Community Earth

System Model on ARCHER”, where the PIs were Dr Massimo

Bollasina and Dr Mike Mineter, University of Edinburgh, with the

technical work undertaken by the author, between the beginning of

April and mid-November, 2014.

Two versions have been ported to ARCHER for all ARCHER users,

namely version 1.2.2, the latest version, and version 1.0.6, a popular

yet older version.

1.1 CESM

The Community Earth System Model (CESM) is one of the leading

global climate models, widely recognized and successfully used by

the international research community.

The method of installing CESM is different to most other software

packages on ARCHER [2], a Cray XC30, in that users have access to

the source code and build the specific executables depending on the

target simulation. As such, CESM is not available via modules;

however, there is an exhaustive, highly detailed User Guides made

available for any ARCHER user to install CESM v1.0.6, [3], and v1.2.2,

[4].

1.2 Technical Information

CESM already runs on a wide range of supercomputers (see [ref5] for

CESM 1.2.0), including another Cray XC30, namely Edison in the USA,

(see [ref6] for a report on CESM atmosphere model), and on a Cray

XE6 system, namely HECToR in the UK [ref7]. For this reason, and

given the evident active cooperation across the CESM users

community, the risks associated with porting seemed low; and

testing and profiling were expected to dominate the use of time in

this project.

CESM comprises about one million lines of code (mainly Fortran90),

and about twelve thousand lines of scripts. It also comprises five

different sub-models (land, ocean, atmosphere, land ice and sea ice),

each needing pools of parallel processes, of potentially different

sizes.

The model components periodically stop to exchange information

with the coupler. The coupler receives fields from the component

models, computes, maps, and merges this information, then sends the

fields back to the component models. The coupler brokers this

sequence of communication interchanges and manages the overall

time progression.

1.3 Work plan

Initially, the aim was to make a single installation (source code and

executable(s)) available to the National Centre of Atmospheric

Science ARCHER group only; however this was altered in the

following manner. We have not made source or executables available

to others as a complete package via modules, say, because each user

will have distinct needs. Further, we generated code modifications or

setup scripts that run on ARCHER and, through the ARCHER website,

all other ARCHER groups can get access to these. The main issue here

was that we could not treat CESM as one black box: people

add/subtract code and run it differently enough that we could not

have a reference source copy on ARCHER

The original work plan was to employ CESM versions 1.0.5 and 1.2.0:

the former because of the legacy of CMIP5 runs, and the latter

bringing in new key features which are currently being validated by

the CESM community.

As part of the testing procedure, we employed two large cases of

direct interest to the PIs: an Atmosphere-only case and a recent

Coupled case as employed in the Intercomparison Project (CMIP5),

part of the latest (September 2013) IPCC fifth assessment report.

These two large cases will be referred to as Case 1 and Case 2,

respectively, from hereon.

Case 1 is the simplest, with relatively fast run time, comprising only

the atmosphere and land models.

The Case 1 has a resolution of f19_f19 and a compset of

F_AMIP_CAM5, where resolution of the global mesh and compset is a

CESM flat which determines which modelling components are

enabled.

Case 2 is the most complex, using all CESM component sub-models

with the addition of atmospheric chemistry to represent aerosol

processes in the atmosphere. Successfully running the second

configuration means that a wide range of other configurations can be

effectively installed on ARCHER.

The Case 2 case has a resolution f19_g16 and a compset of

B_1850_CAM5_CN.

Changes to the Initial Work Plan

During the initial stages of the project, it was decided to change the

original work plan in a number of ways.

Firstly, during the initial phase of the project, after 1.0.5 was

compiled but untested on ARCHER, more reliable forms of the two

versions were released. As such, the project switched versions:

v1.0.6 for v1.0.5 and v1.2.2 for v1.2.0. (Version 1.0.6 contained new

physics and Edison-specific files, and this was of interest since both

Edison and ARCHER are both Cray XC30 platforms.)

Secondly, during the installations of both v1.0.6 and v1.2.2, it was

found that the given default version of the code contained compiler

flags used for debugging, namely –g and –ftz, where the former

enables source-code debugging, and the latter checks every floating

point operation. Employing these flags tends to slow execution. As

such, new tasks were introduced to attempt to optimise the default

installation in two methods: replacing debugging compiler flags with

those for optimization; and, furthermore, replacing the netcdf library

with the parallel-netcdf library, to provide a parallel I/O strategy.

In the initial Work Plan, Case 2 had a finer grid; however, we choose a

relatively coarse spatial resolution (about 2°x2°, equivalent to

approximately 200x200 km in the horizontal for the atmosphere) in

order to reduce run-times during testing.

Lastly, it was found that CESM comes with a Port Validation process

[ref5], which provides are far more detailed and robust method than

the methodology in this project’s original Work Plan to ensure the

porting process has been successful. Thus, the work plan was

expanded to include this official Port Validation process.

CESM Port Validation process

Using CESM’s Port Validation process proved to be problematic.

For instance, the HTML version of the User Guide linked to the Port

Validation process clearly; however, the hot link to this process was

not visible in the PDF version of the User Guide and can be missed by

users employing the PDF version only. Moreover, the process was

found to contain bugs and typographical errors, which suggested to

the author that the process is perhaps not as widely employed as first

thought. These errors were reported to the CESM team.

Using the new test suite, the author found that the "short-term

archive" must be created before the configure/build/test process is

started, so CESM has to be reinstalled from scratch.

We also found that, for v1.0.6, the third task involves four test cases;

however the instructions for v1.0.6 are located in v1.0.4 User Guide,

and v1.0.4 employs CAM3.0 whilst v1.0.6 employs CAM5.0; thus the

links in the User Documentation to trusted output, employed for

comparison, were not relevant.

The CESM Validation Procedure, as described in the CESM User

Guide, [8], is far more extensive and thorough than any other HPC

simulation packages seen by either the author nor the PIs, and would

consume far more cycles than envisioned at first glance. As such, the

Validation Procedure outlined in our Revised Work plan was a

reduced form of the actual CESM Validation Procedure in order to

reduce the amount of cycles required by this project, whilst retaining

the same confidence that the port is valid.

The official CESM Port Validation has 5 Tests, where Test 1 contains

11 functionality cases, Test 2 performs scaling tests, Test 3 contains

both functional and scientific validation tests, Test 4 performs two

one-year runs and finally Test 5 performs a 20-30 year run.

Our revised testing procedure employing 4 Tasks, and is as follows:

 Task 1: as per the original Test 1, wherein the eleven cases

from Test 1 are investigated in full.

 Task 2: as per the original Test 2, wherein scaling tests are

undertaken, but with an extended set of tests, namely Cases 7

and 8 from Test 1 and our own large scale models, namely Case

1: the Atmosphere-only model, and Case 2: and the Coupled

model. The two large-scale cases are run for 5 days of

simulated time.

 Task 3: as per Test 5, however, we replace the given 20 year

runs with our two target models, namely Case 1 and Case 2,

both simulating 20 years.

 Task 4: as per Test 3, but only if Task 3 fails.

2 Experiences when installing CESM

2.1 Version 1.0.6

The default version of CESM v1.0.6 has now been ported to ARCHER,

using the following modules:

export CRAYPE_LINK_TYPE=dynamic

module load cmake

module load svn

module swap PrgEnv-cray PrgEnv-intel

module load cray-netcdf/4.3.2

module load cray-parallel-netcdf/1.4.1

module load cray-hdf5/1.8.13

Version 1.0.6 installed on ARCHER, using serial I/O, using Edison

1.0.6 and HECToR 1.0.5 files as guides. Where possible, the method

employed for HECToR is retained to provide users with a similar

installation to HECToR to permit a smooth transition.

A number of issues arose when porting the riven default v1.0.6 to

ARCHER.

It was found that the cprnc tool must be built by hand before CESM is

installed, and its location appended the executable name to its PATH

in the config_machines.xml file. The user guide states that the PATH

should be updated, and doesn't mention having to build cprnc by

hand before installation.

Further, for Port Validation, Test 1, the cases 3, 7, 9 and 11 all need

the high-memory nodes (whilst the others can run on the normal-

sized memory nodes). Cases 6, 7 and 11, again in Test 1, needed a

further debug flag, "-traceback", added to the F90 compilation flags.

The author believed this debug flag was required to circumvent a bug

in the code/compiler/OS but, since it is required for an I/O routine,

the impact on performance was not significant and, as such, we did

not waste time locating the bug and simply employ the flag for only

the routine in question.

2.2 Version 1.2.2

We found the User Guide for v1.2.0 employs CAM5.0; however, the

links to the trusted output were either broken, or pointed to data sets

now withdrawn, or irrelevant to v1.2.2.

Further, we found that the CESM 1.2.2 User Guide contains a number

of errors, and the code itself requires a work-around to run with the

Intel14 compilers available on ARCHER. Indeed, considerable effort

was spent to investigate switching to the Intel13 compilers to work-

around Intel14 internal compiler bugs; but this was circumvented by

introducing a patch to CESM 1.2.2 made available directly to the

author by a CESM developer.

3 Optimizations

3.1 Compiler flags

Once the given default versions of both v1.0.6 and v1.2.2 were

installed and had passed our Port Validation process, we investigated

a number of different optimization flags. This consumed both effort

and cycles as used Task 1 and Task 2 from our Port Validation

process to ensure the results remained correct, as the introduction of

some optimization flags can generate incorrect results.

The result of this extensive piece of work gave the optimised flags

were “-O3 -ftz –traceback”. We also updated the debugging flags,

replacing “–O2” with “-O0 -g -check uninit -check bounds -check

pointers -fpe0”.

NB: the debugging flags –ftz and –traceback were found to be

necessary to pass our Port Validation for both the optimised and

debugging sets of flags.

3.2 Parallel I/O

Lustre filesystem

By employing parallel NetCDF, we are able to exploit the Lustre file

system on ARCHER, as Lustre is able to perform parallel I/O

efficiently.

The details are this are outwith the scope of this report; however,

technical details on how to tune your environment to get best Lustre

I/O performance can be found here [8].

Fundamentally, Lustre achieves performance by storing a single file

across multiple disks; this is called striping [8]. The number of

“Object Storage Targets”, or OSTs, employed affects how many disks

a file is striped over. As CESM writes very large files, we ensure the

target directories employ all OSTs as are available at that time, via

the command

>lfs setstripe –c -1 target_directory_name

This ensures that all files and directories subsequently created

within this directory inherit the same number of OSTs as the target

directory and, as such, improve the performance of CESM’s parallel

I/O.

ARCHER modules

At the time, the optimisation of 1.2.2 revealed that ARCHER’s

parallel-netcdf module environment required updating for Intel

compilers. Firstly, following the ARCHER User Guide, we attempted

to use the module parallel-netcdf, however, this module stated that

users should use the cray-parallel-netcdf module instead. The

default version of this latter module contained a bug when using the

Intel programming environment. The then most recent version did

not contain this bug, but did require the user to avoid the default

versions and employ the most recent versions of a collection of

modules, namely craype, cray-mpich, cray-netcdf, cray-hdf5 and

cray-libsci. It should be noted that this inconsistency has since been

fixed in the Module Updates, as of the 8th of October, 2014.

4 Performance Results

When performing timing experiments, each case was run at least

three times, and the fastest time recorded.

4.1 Scaling results

In this subsection, we look at the performance results of both the

small cases, case 7 and 8 from Task 1, can the two large cases, Case1

and Case2.

For v1.0.6 we considered Task1: case 7, named ERS.f19_f19.F, and

Task 1: case 8, named ERS.f19_g16.I; and for v1.2.2, we considered

Task 1: case 8, named ERS.f19_g16.I.

As previously stated, the two large cases are Case1, which has a

resolution of f19_f19 and a compset of F_AMIP_CAM5, and Case 2 has

a resolution f19_g16 and a compset of B_1850_CAM5_CN.

Fig. 1: Execution times for v1.0.6, Task1: case 7

Fig. 2: Parallel Efficiency for v1.0.6, Task1: case 7

For v1.0.6, Task1: case7, ERS.f19_f19.F, the given default number of

cores was set to 64 automatically by the installation process. We

found the code scaled well; however, we saw a reduction in the

parallel efficiency when using the default number of cores. For this

case, on ARCHER, we recommend changing the number of cores to

48, e.g. two full nodes.

10

100

1000

1 2 4 8 12 16 24 32 48 64 72 96

T
im

e
 (

se
cs

)

Number of cores

Wall clock run Time

10

20

30

40

50

60

70

80

90

100

1 2 4 8 12 16 24 32 48 64 72 96

P
a

ra
ll

e
l

E
ff

ic
in

cy

Number of cores

Efficiency

Fig. 3: Execution times for v1.0.6, Task1: case 8

Fig. 4: Parallel Efficiency for v1.0.6, Task1: case 8

For v1.0.6, Task1: case8, ERS.f19_g16.I, the given default number of

cores was also set to 64 automatically by the installation process. We

found the code scaled well; however, we saw poor parallel efficiency

when using the default number of cores. For this case, on ARCHER,

we recommend changing the number of cores to 24.

1

10

100

1 2 4 8

1
2

1
6

2
4

3
2

4
8

6
4

1
2

8

T
im

e
 (

se
cs

)

Number of cores

Wall clock run Time

10

20

30

40

50

60

70

80

90

100

1 2 4 8 12 16 24 32 48 64 128

P
a

ra
ll

e
l

E
ff

ic
in

cy

Number of cores

Efficiency

For v1.2.2, Task1: case 8, ERS.f19_g16.I, the results are similar to

v1.0.6 (results available from the author). The given default number

of cores was also set to 64 automatically by the installation process.

We found the code scaled well; however, we saw poor parallel

efficiency when using the default number of cores. For this case, on

ARCHER, we recommend changing the number of cores to 24, e.g.

two full nodes.

Fig. 5: Execution times for v1.0.6, large Case1

Fig. 6: Parallel Efficiency for v1.0.6, large Case 1

50

500

5000

1 2 4 8

1
6

2
4

3
2

4
8

6
4

7
2

9
6

1
2

0

1
2

8

T
im

e
 (

se
cs

)

Number of cores

Wall clock run Time

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16 24 32 48 64 72 96 120128

P
a

ra
ll

e
l

E
ff

ic
in

cy

Number of cores

Efficiency

Fig. 7: Execution times for v1.0.6, large Case2

 Fig. 8: Parallel Efficiency for v1.0.6, large Case 2

The results of timing Case 1 and Case 2 for v1.0.6 are presented in

Figures 5 and 6, and 7 and 8. The results of timing exercise for Case 1

and Case 2 for v1.2.2 are similar (results available from the author).

For v1.0.6, Case 2 could not be run on ncores=1 or 2, due to a build

failure (probably due to memory limitations), and on ncores=72 or

100

1000

10000

T
im

e
 (

se
cs

)

Number of cores

Wall clock run Time

10

20

30

40

50

60

70

80

90

100

4 8

1
6

2
4

3
2

4
8

6
4

7
2

9
6

1
2

0

1
2

8

1
4

4

2
5

6

5
1

2

1
0

2
4

P
a

ra
ll

e
l

E
ff

ic
in

cy

Number of cores

Efficiency

144, due to a configure failure (possibly due to a non-power of 2

number of cores)

For v1.0.6, the default number of cores for Case 1 and Case 2 was 64

and 128, respectively; however the most efficient number of cores

was found to be 96 and 256, respectively.

Thus, for v1.0.6, the most efficient number of cores is smaller than

the default for the small test cases, and larger for the two large cases.

This was the value employed when running Test 5, when running

this case for a large 20 years simulation.

Both Case 1 and Case 2, which ran for 20 simulated years, produced

correct answers. These simulations burned .1MAUs and .5MAUs,

respectively.

For the large test cases, namely Case 1 and Case 2, for both v.1.0.6

and v1.2.2, the default number of cores for all four cases was given to

be 64 cores.

After the extensive profiling exercise, we found the optimum number

of cores on ARCHER was larger than the default value for v1.0.6 for

both large cases: Case1: 128; Case2: 256; whereas, for v1.2.2, the

default value of 64 was found to be the optimum number of cores.

This suggests to the author that v1.2.2 of CESM calculates the default

number of cores more accurately than v1.6.0.

Case 2 could not be run on ncores=1 or 2, due to a build failure

(probably due to memory limitations), and on ncores=72 or 144, due

to a configure failure (possibly due to a non-power of 2 number of

cores)

The default number of cores for Case 2 was 128; however, the most

efficient number of cores was found to be 256. This was the value

employed when running Test 5, when running this case for a large 20

years simulation.

It was found that v1.0.6 appears to prefer powers-of-two core counts.

However, it should be noted that ARCHER chargers each multiple of

24. Thus, when running on 32 cores, the user will be charged for 48

cores (~50% more); however, when running on 512 cores, say, the

user is charged for 528 cores (~3% more). Thus, this is only of

concern when running on low core counts.

When performing Task 4 of our Port Validation, we employed our

optimal number of cores for v1.0.6, for both Case 1 and Case 2, where

each ran for 20 simulated years. We found they produced correct

answers. These simulations burned .1MAUs and .5MAUs,

respectively.

4.2 Results from various methods of optimization

In this subsection, we consider the results of five different methods

of optimization using v1.2.2 and the two large test cases.

The five methods examined where

1. the given default installation,

a. serial netdf library, default OST value of 1

b. referred to as ‘netcdf, ost=1’

2. the installation using optimisted compiler flags

a. serial netcdf library, default OST value of 1, -O3

b. referred to as ‘netcdf, ost=1, -O3’

3. default installation with parallel netcdf enabled

a. parallel netcdf library, default OST value of 1

b. referred to as ‘pnetcdf, ost=1’

4. default installation with parallel netcdf enabled

a. parallel netcdf library, optimised OST value of -11

b. referred to as ‘pnetcdf, ost=-1’

5. the installation using optimised compiler flags with parallel

netcdf enabled

a. parallel netcdf, optimised OST value of -1, -O3

b. referred to as ‘pnetcdf, ost=-1, -O3’

For each of the five methods, various number of cores were used and

each test was ran three times, and the fastest time reported.

The default number of cores for both Case 1 and Case 2 for v1.2.2 was

given as 64. Once all the results were tabulated for all five methods,

it was found that 64 was indeed the most efficient number of cores

for all cases, except method 5, ‘pnetcdf, ost=-1, -O3’, where the

optimum number of cores was found to be 96 and 72 for Case 1 and

Case 2, respectively. (These values for the number of cores employed

when running Test 5 of our Port Validation test, namely running both

Case 1 and Case 2 for 20 years.)

Fig. 9: Execution times for v1.2.2 running Case 1 and Case 2 and the 5

methods of optimization using the most optimal number of cores for

each test.

From Figure 9 we can see that for Case 2, the time is reduced as the

quality of optimsation method improves; however, for Case 1, it

appears that when the optimised set of compiler flags is enabled

without parallel I/O, the performance is reduced.

 Case 1 Case 2

time for optimised 178 276

time for default 192 282

percentage improvement 7.29 2.13

Table 1: v1.2.2 performance improvement

As can be seen in Table 1, using the optimised version of CESM v1.2.2,

we have a speed up of 7.29% for Case 1 and 2.13% for Case 2.

150

170

190

210

230

250

270

290

Case 1 Case 2

netcdf, ost=1

netcdf, ost=1, -O3

pnetcdf, ost=1

pnetcdf, ost=-1

pnetcdf, ost=-1, O3

5 Conclusions

Now that CESM is readily available, we envisage that there will be

further growth in interest in the model. This state-of-the-art model

complements those already planned for deployment on ARCHER,

namely the Met. Office’s Unified Model, WRF and WRF-CHEM in that:

1. CESM simulates tropical climate better than current alternative

models;

2. CESM is a prominent model developed by the US climate

research community. There is the need to facilitate the

comparison between US and UK state-of-the-art models in

order to resolve uncertainties in climate projections;

3. CESM can exploit the high level of parallelism provided by

ARCHER;

4. CESM can be configured in many ways, opening a wide range of

avenues for climate research.

5.1 Computational and Scientific Benefits

This state-of-the-art model complements those already planned for

deployment on ARCHER, the Met. Office’s Unified Model, WRF and

WRF-CHEM, in that:

1. CESM simulates tropical climate better than current

alternative models. The tropics represent an important area

of research for the climate scientific community. One

motivation for this proposal comes from collaboration in

this area between Edinburgh and Reading universities.

2. CESM is a prominent model developed by the US climate

research community. There is the need to facilitate the

comparison between US and UK models, given current

models’ complexity and in order to improve our

understanding of their biases.

3. CESM can exploit the high level of parallelism provided by

ARCHER, potentially permitting modelling at a relatively

high resolution in reasonable wall-clock times.

4. CESM can be configured in many ways – to explore different

models and parameterizations of land, sea, ice, atmosphere,

at various spatial resolutions – opening a wide range of

avenues for climate research.

An example of how the above factors combine together is in our

intention to collaborate with UK partners in assessing the impact of

increased atmospheric aerosols from human activities on regional

climate variability and change. An early challenge is to better

understand the changes in the Asian monsoon. Aerosols represent

the major uncertainty in estimating climate sensitivity to increased

greenhouse gases, and thus, hinder robust projections of future

climate change.

The model therefore offers a significant new capability to the UK

climate modelling community.

5.2 Lessons Learned

Use both the PDF and HTML versions of User Guides. The PDF

version is the whole of the guide and is searchable, but may not

include hot links, visible only in the HTML versions, to further

important information.

Often it is desirable to install two versions of a particular code,

namely the most up-to-date version and an older yet more popular

version, where the latter is often incompatible with the former. It is

typical that the older more familiar version is installed first; however,

we would strongly suggest that the more up-to-date version is

installed first. Thus, if there are any installation issues, the

developers are more inclined to offer assistance as the newest

version will have fixed bugs present in the older.

5.3 AMWG diagnostics tool

Lastly, the AMWG diagnostics package produces over 600 plots and

tables from CCSM (CAM) monthly netcdf files [10].

For added value, the AMWG diagnostics tool is has also been ported

to ARCHER [11].

5.4 Future Work

Both CESM 1.0.6 and 1.2.2 on ARCHER will be kept up-to-date when

required. In other words, if users find the current set of instructions

have become stale, e.g., they do not accurately describe the current

installation process, then the instructions require updating. As such,

users are kindly asked to submit an email to helpdesk@archer.ac.uk

describing the required updates.

5.5 Acknowledgements

The codes in this project have already been ported to Edison at LBNL,

where Edison is a similar machine to ARCHER. As such, this project

has established a close and successful collaboration with the member

of the CESM team responsible for the Edison port, and this has

proven very successful when addressing bugs in both the CESM code

and its associated documentation.

Special thanks are due to Jim Edwards, CESM Software Engineer at

the National Centre for Atmospheric Research, Bolder, Colorado.

This work was funded under the embedded CSE programme of the

ARCHER UK National Supercomputing Service

(http://www.archer.ac.uk).

5.6 References

[1]www.cesm.ucar.edu/modesl/cesm1.0

[2]www.archer.ac.uk

[3]www.archer.ac.uk/documentation/software/cesm/cesm106.php

mailto:helpdesk@archer.ac.uk
http://www.cesm.ucar.edu/modesl/cesm1.0
http://www.archer.ac.uk/
http://www.archer.ac.uk/documentation/software/cesm/cesm106.php

[4]www.archer.ac.uk/documentation/software/cesm/cesm122.php

[5]www.cesm.ucar.edu/models/cesm1.2/cesm/doc/modelnl/machi

nes.html

[6]www.cug.org/proceedings/cug2013_proceedings/includes/files/

pap156.pdf

[7]www.hector.ac.uk/

[8]www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_6/x23

23.html

[9] Performance of Parallel IO on ARCHER, D. Henty, A. Jackson, C.

Moulinec, V. Szeremi, ARCHER white paper, June, 2015,

www.archer.ac.uk/documentation/white-

papers/parallelIO/ARCHER_wp_parallelIO.pdf

[10]www2.cesm.ucar.edu/working-groups/amwg/amwg-

diagnostics-package

[11]www.archer.ac.uk/documentation/software/cesm/amwg.php

http://www.archer.ac.uk/documentation/software/cesm/cesm122.php
www.cug.org/proceedings/cug2013_proceedings/includes/files/pap156.pdf
www.cug.org/proceedings/cug2013_proceedings/includes/files/pap156.pdf
http://www.hector.ac.uk/
http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_6/x2323.html
http://www.cesm.ucar.edu/models/cesm1.0/cesm/cesm_doc_1_0_6/x2323.html
http://www.archer.ac.uk/documentation/white-papers/parallelIO/ARCHER_wp_parallelIO.pdf
http://www.archer.ac.uk/documentation/white-papers/parallelIO/ARCHER_wp_parallelIO.pdf
www2.cesm.ucar.edu/working-groups/amwg/amwg-diagnostics-package
www2.cesm.ucar.edu/working-groups/amwg/amwg-diagnostics-package
http://www.archer.ac.uk/documentation/software/cesm/amwg.php

6 Appendix

The following subsection is quoted from the CESM User Guide and

may be useful for users new to CESM.

6.1 For New CESM Users

Porting to Machines: Supported, Prototype and Generic

Scripts for supported machines, prototype machines and generic

machines are provided

Supported machines have machine specific files and settings added

to the CESM1 scripts. To get a machine ported and functionally

supported in CESM, local batch, run, environment, and compiler

information must be configured in the CESM scripts.

Prototype machines are machines in the CESM user community that

CESM has been ported to and the machine specific files and settings

were provided by the user community. Prototype machines all start

with the prefix prototype_. These machines may not work out-of-the-

box.

Generic machine generally refers more to classes of machines, like

IBM AIX or a linux cluster with an intel compiler, and the generic

machine names all start with the generic_ prefix. Generic machines

require that a user provide some settings via command line options

with create_newcase and then some additional effort will generally

be required to get the case running. Generic machines are handy for

quickly getting a case running on a new platform, and they also can

accelerate the porting process.

For more information on porting, see Chapter 7.

To get a list of current machines which are either Supported,

Prototype or Generic, run script create_newcase with option -list

from the $CCSMROOT directory.

The list of available machines are documented in CESM machines.

Running create_newcase with the "-list" option will also show the list

of available machines for the current local version of CESM1.

Downloading input data

CESM input data will be made available through a separate

Subversion input data repository.

DO NOT try to download the entire dataset.

CESM provides tools to check and download input data

automatically.

A local input data directory should exist on the local disk, and it also

needs to be set in the CESM scripts via the variable

$DIN_LOC_ROOT_CSMDATA.

For supported machines, this variable is preset. For generic

machines, this variable is set as an argument to create_newcase.

Multiple users can share the same $DIN_LOC_ROOT_CSMDATA

directory. The files in the subdirectories of

$DIN_LOC_ROOT_CSMDATA should be writeprotected. The

directories in $DIN_LOC_ROOT_CSMDATA should generally be group

writable, so the directory can be shared among multiple users.

When generating CESM executable, the utility, check_input_data is

called, which tries to locate all required input. If required data is not

found in $DIN_LOC_ROOT_CSMDATA, then the data will be

downloaded automatically or downloaded by invoking

check_input_data with the -export command argument. If you want to

download the input data manually you should do it before you build

CESM.

Quick Start (CESM Workflow)

The following quick start guide is for versions of CESM that have

already been ported to the local target machine.

If CESM has not yet been ported to the target machine,

please see Chapter 7. If you are new to CESM1, please consider

reading the introduction first

These definitions are required to understand this section:

• $COMPSET refers to the component set.

• $RES refers to the model resolution.

• $MACH refers to the target machine.

• $CCSMROOT refers to the CESM root directory.

• $CASE refers to the case name.

• $CASEROOT refers to the full pathname of the root directory where

the case ($CASE) will be created.

• $EXEROOT refers to the executable directory. ($EXEROOT is

normally NOT the same as $CASEROOT).

• $RUNDIR refers to the directory where CESM actually runs. This is

normally set to $EXEROOT/run.

This is the procedure for quickly setting up and running a CESM case.

1. Download CESM (see Download CESM).

2. Select a machine, a component, and a resolution from the list

displayed after invoking this command:

> cd $CCSMROOT/scripts

> create_newcase -list

See the component set table for a complete list of supported compset

options.

See the resolution table for a complete list of model resolutions.

See the machines table for a complete list of machines.

3. Create a case.

The create_newcase command creates a case directory containing the

scripts and xml files to configure a case (see below) for the requested

resolution, component set, and machine. create_newcase has several

required arguments and if a generic machine is used, several

additional options must be set (invoke create_newcase -h for help).

If running on a supported machine, ($MACH), then invoke

create_newcase as follows:

> create_newcase -case $CASEROOT \

-mach $MACH \

-compset $COMPSET \

-res $RES

If running on a new target machine, see porting in Chapter 7.

4. Configure the case.

Issuing the configure command creates component namelists and

machine specific

build and run scripts. Before invoking configure, modify the case

settings in

$CASEROOT as needed for the experiment.

a. cd to the $CASEROOT directory.

> cd $CASEROOT

b. Modify configuration settings in env_conf.xml and/or in

env_mach_pes.xml (optional). (Note: To edit any of the env xml files,

use

the xmlchange command. invoke xmlchange -h for help.)

c. Invoke the configure command.

> configure -case

5. Build the executable.

a. Modify build settings in env_build.xml (optional).

b. Run the build script.

> $CASE.$MACH.build

6. Run the case.

a. Modify runtime settings in env_run.xml (optional). In particular,

set the DOUT_S variable to FALSE.

b. Submit the job to the batch queue. This example uses a submission

command for a Cray computer:

> qsub $CASE.$MACH.run

7. When the job is complete, review the following directories and files

a. $RUNDIR. This directory is set in the env_build.xml file. This is the

location where CESM was run. There should be log files there for

every component (ie. of the form cpl.log.yymmdd-hhmmss). Each

component writes its own log file. Also see whether any restart or

history files were written. To check that a run completed

successfully, check the last several lines of the cpl.log file for the

string " SUCCESSFUL TERMINATION OF CPL7-CCSM".

b. $CASEROOT/logs. The log files should have been copied into this

directory if the run completed successfully.

c. $CASEROOT. There could be a standard out and/or standard error

file.

d. $CASEROOT/CaseDocs. The case namelist files are copied into this

directory from the $RUNDIR.

e. $CASEROOT/timing. There should be a couple of timing files there

that summarize the model performance.

f. $DOUT_S_ROOT/$CASE. This is the archive directory. If DOUT_S is

FALSE, then no archive directory should exist. If DOUT_S is TRUE,

then log, history, and restart files should have been copied into a

directory tree here.

6.2 Employing CESM 1.2.2 on ARCHER

CESM 1.2.2 User Guide

The User Guide can be found

at http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersgui

de/book1.html

NB: The PDF version is useful for searching the entire guide, however

the PDF version gives no clue as to what text may be presented as

links in the HTML version, so it is recommended to use both.

http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/book1.html
http://www.cesm.ucar.edu/models/cesm1.2/cesm/doc/usersguide/book1.html

Installing CESM 1.2.2 on ARCHER

Firstly, edit your ~/.bashrc file and append the following lines

export CRAYPE_LINK_TYPE=dynamic

module load cmake

module load svn

module swap PrgEnv-cray PrgEnv-intel

module load cray-netcdf/4.3.2

module load cray-parallel-netcdf/1.4.1

module load cray-hdf5/1.8.13

These lines are required for each login session and batch job, thus

placing them in the ~/.bashrc file will ensure the user does not forget

to run them. This code requires the intel14 compiler which, in turn

requires specific versions of craype, cray-parallel-netcdf, etc.

Download CESM 1.2.2 into your /work directory using svn, and then

by following the instructions

onhttp://www.cesm.ucar.edu/models/cesm1.2/tags/index.html#CE

SM1_2_2

Once downloaded, add the following 5 files into the

'scripts/ccsm_utils/Machines' directory.

122_config_machines.xml

env_mach_specific.archer

Depends.intel

122_config_compilers.xml

122_mkbatch.archer

NB rename 122_mkbatch.archer to mkbatch.archer,

122_config_compilers.xml to config_compilers.xml, and

122_config_machines.xml to config_machines.xml (i.e remove the first

4 characters)

http://www.cesm.ucar.edu/models/cesm1.2/tags/index.html#CESM1_2_2
http://www.cesm.ucar.edu/models/cesm1.2/tags/index.html#CESM1_2_2
http://www.archer.ac.uk/documentation/software/cesm/122_config_machines.xml
http://www.archer.ac.uk/documentation/software/cesm/env_mach_specific.archer
http://www.archer.ac.uk/documentation/software/cesm/Depends.intel
http://www.archer.ac.uk/documentation/software/cesm/122_config_compilers.xml
http://www.archer.ac.uk/documentation/software/cesm/122_mkbatch.archer

Note, before building CESM, the input, archive and scratch directories

must exist. The input directory already exists on ARCHER, and

resides in a space which any ARCHER user can read and write to. The

archive and scratch directories, on the other hand, must be created

by hand by each user in their own work directory, e.g.

mkdir /work/ecse0116/ecse0116/gavin2/cesm1_2_2/archive

mkdir /work/ecse0116/ecse0116/gavin2/cesm1_2_2/scratch

mkdir /work/ecse0116/ecse0116/gavin2/cesm1_2_2/inputdata

NB if you will use parallel-netcdf and not simply netcdf then to gain

best performance, you should set the LFS stripe to -1 for these three

directories using the following three commands

lfs setstripe -c -1 /work/ecse0116/ecse0116/gavin2/cesm1_2_2/SCRATCH

lfs setstripe -c -1 /work/ecse0116/ecse0116/gavin2/cesm1_2_2/archive

lfs setstripe -c -1 /work/ecse0116/ecse0116/gavin2/cesm1_2_2/inputdata

These directories are then referenced in config_Machines.xml, e.g.

<DIN_LOC_ROOT>/work/ecse0116/ecse0116/gavin2/cesm1_2_2/inputdata</DIN_LO

C_ROOT>

<DIN_LOC_ROOT_CLMFORC>/work/ecse0116/ecse0116/gavin2/cesm1_2_2/ccsm1/in

putdata/atm/datm7</DIN_LOC_ROOT_CLMFORC>

<DOUT_S_ROOT>/work/ecse0116/ecse0116/gavin2/cesm1_2_2/archive/$CASE</DO

UT_S_ROOT>

<CESMSCRATCHROOT>/work/ecse0116/ecse0116/gavin2/cesm1_2_2/scratch</CES

MSCRATCHROOT>

Building the cprnc tool

Finally, one must build, by hand, the cprnc tool.

To make the cprnc tool, first upload the following

file Makefile.cprnc122.archer to your cprnc directory, which will

resemble:

/work/ecse0116/ecse0116/gavin2/cesm1_2_2/tools/cprnc

http://www.archer.ac.uk/documentation/software/cesm/Makefile.cprnc122.archer

Once uploaded, run the following commands to make the cprnc tool

(if they are not present in your ~/.bashrc file):

export CRAYPE_LINK_TYPE=dynamic

module load cmake

module load svn

module swap PrgEnv-cray PrgEnv-intel

module load cray-netcdf/4.3.2

module load cray-parallel-netcdf/1.4.1

module load cray-hdf5/1.8.13

and then copy over a file strangely missing from the down

cp ../../models/csm_share/shr/dtypes.h .

and then make the executable using the following three commands.

(The 2nd throws an error which is fixed by simply running the

command again)

make realclean -f Makefile.cprnc122.archer

make -f Makefile.cprnc122.archer

make -f Makefile.cprnc122.archer

Once the cprnc executable has been built, you must then edit the

config_machines.xml file and replace the existing value of of

CCSM_CPRNC to point to the location of your new cprnc executable,

e.g. the following line must be changed by hand from

CCSM_CPRNC="/work/ecse0116/ecse0116/gavin2/CESM1.0/models/atm/cam/tools/c

prnc/cprnc"

to something similar to

CCSM_CPRNC="/work/ecse0116/ecse0116/gavin/cesm1_2_2/tools/cprnc/cprnc"

This was a temporary bug in the intel compiler which may case the

cprnc tool to throw either of the following errors at runtime:

Fatal Error: This program was not built to run in your system.

Please verify that both the operating system and the processor support Intel(R) AVX,

F16C and RDRAND instructions.

or

Please verify that both the operating system and the processor support Intel(R) F16C

instructions

This can be fixed by running the following commands

module swap craype-ivybridge craype-sandybridge

make clean -f Makefile.cprnc122.archer

make -f Makefile.cprnc122.archer

module swap craype-sandybridge craype-ivybridge

Completing the configuration process

6.2.1.1 Tools directory

By default, the taskmaker.pl tool is found in the

scripts/ccsm_utils/Machines directory; however, the code expects

this tool to reside in the scripts/ccsm_utils/Tools directory. One

workaround is to copy the tool to the expected directory, e.g.

cd scripts/ccsm_utils cp Machines/taskmaker.pls Tools/.

Furthermore, some CESM scripts are not, by default, executable. A

simple work-around which ensures the Tools are executable is to run

the following command

chmod 755 scripts/ccsm_utils/Tools/*

6.3 Building CESM

Firstly, Change directory to the scripts directory in the 'work'

installation of CESM, e.g.

cd /work/ecse0116/ecse0116/gavin/CESM1.0/scripts

6.4 Building tests

The process of building the CESM tests is slightly different from

building simulations.

For the test ERS_D.f19_g16.X, say, issue the following commands in

the 'scripts' directory.

./create_test -testname ERS_D.f19_g16.X.archer_intel -testid t21

cd ERS_D.f19_g16.X.archer_intel.t21

./ERS_D.f19_g16.X.archer_intel.t21.test_build

At present, the output of these processes contains multiple instances

of the following string. NB this 'error' can safely be ignored.

ModuleCmd_Switch.c(172):ERROR:152: Module 'PrgEnv-cray' is currently not loaded

Running the test

To run the test, run the following command:

./ERS_D.f19_g16.X.archer_intel.t21.submit

6.5 Building your simulation

The code is built, from scratch, for each simulation the user wants to

run.

Consider, say, the following model: f19_g16 B_18050_CAM5_CN

This is configured, built and submitted, for a case called, my_first_sim,

say, using the following commands:

./create_newcase -case my_first_sim -res f19_g16 -compset B_1850_CAM5_CN -

mach archer -compiler intel

cd my_first_sim

./cesm_setup

./my_first_sim.build

Consider the create_newcase command: the -case flag assigns a local

name to be given. Here I have used 'my_first_sim'; the -res flag

assigns the mesh resolution; the -compset flag assigns the

computation set of codes to employ; the -mach flag assigns the name

of the platform; in this case 'archer'; and finally the -compiler flag

assigns the name of the compiler; in this case 'intel' (which will

employ intel14).

Consider the build command: if the input/restart files are not

present, then the build command down loads the necessary files. As

such, this command can take over an hour. Further, if the build fails

with an error which references the /tmp directory, simply run the

build command again as it is likely the system was very busy and the

build command temporarily ran out of memory.

Before running the simulation, users should check both the

your_name_for_this.archer.run file and the env_run.xml file, as the

default values produce only a short run.

6.5.1.1 Running your simulation

To run the simulation, run the following command:

./my_first_sim.submit

6.6 How to change from the default settings

Before building

6.6.1.1 Changing the number of cores

Changing the number of cores to 128, say

cd $CASE

NTASKS=128

./xmlchange -file env_mach_pes.xml -id NTASKS_ATM -val $NTASKS

./xmlchange -file env_mach_pes.xml -id NTASKS_LND -val $NTASKS

./xmlchange -file env_mach_pes.xml -id NTASKS_ICE -val $NTASKS

./xmlchange -file env_mach_pes.xml -id NTASKS_OCN -val $NTASKS

./xmlchange -file env_mach_pes.xml -id NTASKS_CPL -val $NTASKS

./xmlchange -file env_mach_pes.xml -id NTASKS_GLC -val $NTASKS

./xmlchange -file env_mach_pes.xml -id NTASKS_ROF -val $NTASKS

./xmlchange -file env_mach_pes.xml -id NTASKS_WAV -val $NTASKS

./xmlchange -file env_mach_pes.xml -id TOTALPES -val $NTASKS

./cesm_setup -clean

./cesm_setup

./*.clean_build

./*.build

6.6.1.2 Changing simulation units

cd $CASE

change given STOP_OPTION value to nyears

./xmlchange -file env_run.xml -id STOP_OPTION -val nyears

change given STOP_N to 20

./xmlchange -file env_run.xml -id STOP_N -val 20

don't produce restart files at end

./xmlchange -file env_run.xml -id REST_OPTION -val never

or *do* produce restart files at end

#./xmlchange -file env_run.xml -id REST_OPTION -val $STOP_N

./cesm_setup -clean

./cesm_setup

./*.clean_build

./*.build

Parallel netcdf library

The parallel and serial versions of the netcdf are both available

within the default build on ARCHER.

The default setting is to employ the serial netcdf libraries.

To employ the parallel netcdf libraries, change directory to the $CASE

and run

./xmlchange -file env_run.xml -id PIO_TYPENAME -val pnetcdf

which change the value of PIO_TYPENAME from netcdf to

pnetcdf, before building. (This is contrary to the User Guide which

states the value is changed after building)

The number of IO tasks is PIO_NUMTASKS, and the default value is -1

which instructs the library to select a suitable default value.

As stated above, if using parallel-netcdf and not simply netcdf, then to

gain best performance, you should set the LFS stripe to -1 for your

SCRATCH, archive and inputdata directories.

lfs setstripe -c -1 /work/ecse0116/ecse0116/gavin2/cesm1_2_2/SCRATCH

lfs setstripe -c -1 /work/ecse0116/ecse0116/gavin2/cesm1_2_2/archive

lfs setstripe -c -1 /work/ecse0116/ecse0116/gavin2/cesm1_2_2/inputdata

Changing the batch script

6.6.1.3 Change the budget to your budget account

In the file mkbatch.archer, change the line

set account_name = "ecse0116"

to

set account_name = "<budget>"

where the string <budget> is replaced by the name of your budget on

ARCHER.

6.6.1.4 Editing the batch script

The batch script is a file which ends with '.run', thus to edit the batch

script using vi, say, type the following

vi *.run

6.6.1.5 Requesting high memory nodes

Archer has two types of compute nodes, 2632 nodes with 64MBs of

shared memory and 376 nodes with 128MBs. Both have 24 cores

which share this memory.

During the Validation Process, it was found that the larger memory

nodes were required to run some of the tests. To use the larger

memory nodes, update the batch script, namely the *.run file, to

select the larger memory nodes, specifically, to run one 4 large

memory nodes, set

#PBS -l select=4:bigmem=true

else to run on 4 smaller memory nodes set

#PBS -l select=4:bigmem=false

or, if you don't mind which node you run on, set

#PBS -l select=4

6.6.1.6 Requesting longer wall times

Users are limited to requesting a maximum wall time of 24 hours, e.g.

#PBS -l walltime=24:00:00

however, if the job requires more time, then users can increase this

limit to 48 hours by using the PBS long flag, e.g.

#PBS -q long

#PBS -l walltime=48:00:00

