
DL_POLY_4: Multiple Time Stepping
Development Support
Ian Bush (Oxford University) and Ilian Todorov (STFC Daresbury Laboratory)

Abstract

The RESPA symplectic multiple time stepping scheme has been implemented in DL_POLY_4. As opposed to an earlier

implementation all ensembles and force fields are now covered. Use of the new RESPA implementation is shown to

consistently bring a 15-25% improvement in performance at fixed process count, and to also noticeably improve the scaling

of the code. The new implementation carefully separates the application dependent and independent layers, so allowing re-

use in other molecular dynamics codes.

Introduction

DL_POLY_41 is a general purpose classical Molecular Dynamics (MD) simulation software package which has

been developed at STFC Daresbury Laboratory2 by I.T. Todorov. The package is used to model the atomistic

evolution of the full spectrum of models commonly employed in the materials science, solid state chemistry,

biological simulation and soft condensed-matter communities. It has been developed under the auspices of

CCP53 and MCC4 and is widely used throughout the UK as well as world-wide, with over 3500 licence holders.

It is a fully data distributed code, employing methodologies such as spatial domain decomposition, link-cells,

Verlet neighbour list5 and the 3D Daresbury Fourier Transform (DaFT)6. The code demonstrates excellent

performance and has been shown to scale to large numbers of processors.

This proposal was for the implementation of a symplectic multiple time stepping schemes for less frequent

calculations of expensive operations such as long-ranged Ewald and short-ranged inter-molecular evaluations.

The core of the necessary work had already been partially implemented through a previous dCSE project under

the HECToR CSE support mechanism7. Though successful it was found during the work that the large number

of options and integrators DL_POLY supports made it possible only to implement this scheme for subset of the

systems that DL_POLY can simulate, mainly because more restructuring of the integrators was required than

initially envisaged. We therefore asked for a small amount of extra time to finish the work for systems that

require barostats and rigid bodies, and also a short period of time to merge the new code into the main code

base. In this report we highlight the results of this work.

Multiple Time Stepping

Multiple time stepping is a feature especially popular in, although not limited to, the biochemical area of

computational chemistry. The idea of symplectic multiple time stepping, RESPA, was first suggested by

1 http://www.ccp5.ac.uk/DL_POLY/
2 http://www.sci-techdaresbury.com/properties/daresbury-laboratory/
3 http://www.ccp5.ac.uk/
4 http://www.ucl.ac.uk/klmc/mcc/
5 I.T. Todorov, W. Smith, K. Trachenko & M.T.Dove, J. Mater. Chem., 16, 1911-1918 (2006)
6 I.J. Bush, I.T. Todorov and W. Smith, Comp. Phys. Commun., 175, 323-329 (2006)
7 http://www.hector.ac.uk/cse/distributedcse/reports/DL_POLY05/

Tuckerman, Berne and Martyna8 and elegantly researched by Humphreys, Freisner and Berne9. The idea behind

the methodology is to exploit the fact that different terms in the force field evolve on different time scales. For

instance the long-ranged contribution to the Ewald (electrostatic) terms changes only very slowly when

compared to terms involving intra-molecular motion, such as vibrations. Now, as is usual with the numerical

integration of differential equations, the fastest motion determines what the timestep must be to ensure

numerical stability of the solution (c.f. the Courant-Fredrichs-Lewy10 condition). However, in standard

molecular dynamics every term in the force field is evaluated at every timestep. Thus if a very short timestep is

required to correctly integrate molecular vibrations, it will also force the evaluation of the long range Ewald

potential at every timestep, despite the later hardly varying at all on the time scale being examined. This can be

very expensive, and instead the RESPA method provides a way to evaluate the slowly varying terms in the user

specified force field only when required, whilst both keeping the short timestep required for the more quickly

varying terms, and only causing a small degradation in the quality of the results. Thus as certain terms are only

evaluated infrequently rather than at every step one would hope for an improvement in time to solution.

The mathematics of RESPA ultimately depend on the Trotter expansion of the Liouville propagator. The terms

in the MD force field are split into a number of classes and the fastest varying terms (class 1) are evaluated

every timestep. Every n1 timesteps the slower varying Class 2 terms are evaluated, and in turn Class 3 terms are

evaluated every n2 times Class 2 is calculated (and so n1xn2 times Class 1 is evaluated). This scheme is iterated

until all the classes have been evaluated. In Humpherys et al. a 4 level RESPA scheme was outlined, and this

was followed in the original implementation within DL_POLY. In that work the following breakdown of the

force terms was adopted:

Class 1 (i.e. fastest varying): Core-shell, tethered atoms, harmonic bonds

Class 2: Tersoff, three body, four body, angles, dihedral, inversions

Class 3: Metal, Van der Waals, “Short range” electrostatic terms (including Ewald)

Class 4: (i.e. slowest) “Long range” Ewald

It can be seen that physically classes 1 and 2 are intra-molecular terms, 1 corresponding to (extremely!)

approximate electronic effects and hard vibrational modes, class 2 to essentially soft vibrational modes, while 3

and 4 deal with inter-molecular effects. Please also note that each of the above short descriptions may cover

more than one routine within the code, as each type of term may be modelled in more than one way.

Implementation

In fact as part of this work the whole RESPA scheme was re-implemented within DL_POLY. It was decided

that for software sustainability grounds that it was better to re-engineer the whole scheme. The main driver

behind this was ultimately the reason behind this proposal: the number of required intervention points to support

RESPA within DL_POLY was too high to be long term sustainable in an actively developed code. Instead a

reorganisation of the scheme described by Humphreys allowed the vast majority of the changes to be restricted

8 Tuckerman, Berne and Martyna, J. Chem. Phys., 97 (3), 1990-2001 (1992)
9 Humphreys, Freisner and Berne, J. Phys. Chem., 98, 6885-6892 (1994)
10 Courant, R.; Friedrichs, K.; Lewy, H. (1928), "Über die partiellen Differenzengleichungen der
mathematischen Physik", Mathematische Annalen 100 (1): 32–74

http://en.wikipedia.org/wiki/Richard_Courant
http://en.wikipedia.org/wiki/Kurt_Otto_Friedrichs
http://en.wikipedia.org/wiki/Hans_Lewy
http://resolver.sub.uni-goettingen.de/purl?GDZPPN002272636
http://resolver.sub.uni-goettingen.de/purl?GDZPPN002272636
http://en.wikipedia.org/wiki/Mathematische_Annalen

to very high levels of the code, and many of the base force term evaluators and integrators required no

modification at all. The essence of this is as follows. Consider a two class scheme within the velocity Verlet

integration scheme, which one might outline as follows (again following Humphreys). In the below F represents

a force term, v a velocity, r a position and m a mass

Evaluate force class 2 (F2) Evaluate

Evaluate force class 1 (F1) Evaluate

Do N = 1, n_time_steps

 vj = vj + 0.5 * n1 * δt * F2j / mj for all j Integrate

 Do i1 = 1, n1

 vj = vj + 0.5 * δt * F1j / mj for all j Integrate

 rj = rj + δt * vj Integrate

Evaluate force class 1 (F1) Evaluate

 vj = vj + 0.5 * δt * F1j / mj for all j Integrate

End Do

Evaluate force class 2 (F2) Evaluate

vj = vj + 0.5 * n1 * δt * F2j / mj for all j Integrate

End Do

In the scheme we have indicated whether each step is an evaluation of forces or a step in the integration of the

equations of motion. While simple this has a number of practical drawbacks for implementation in a large,

general purpose MD code such as DL_POLY.

1. It can be seen that each and every stage requires knowledge of what class is being evaluated. In the

integration steps this is due to the presence of n1 when updating the velocities with the class 2 forces

2. If new force terms are added it is necessary that they are made “RESPA aware” a priori as otherwise

they will be evaluated at multiple levels, and thus the equations will be incorrectly integrated

However, it is simple to rewrite the above in a form, which obviates much of these deficiencies. First let us

introduce a weighted force of class C: FCjW=∑k≤C nk-1Fkj. Thus the weighted force of class C is simply the

sum of all forces for classes up to and including class C, each term being weighted by the appropriate repeat

number nC. For the purposes of this we set n0=1. Using this we may rewrite the above 2 class scheme as

Evaluate weighted force class 2 (FW=F2W) Evaluate

Do N = 1, n_time_steps

 Do i1 = 1, n1

 vj = vj + 0.5 * δt * FjW / mj for all j Integrate

 rj = rj + δt * vj Integrate

 If(i1 != n1) Then

Evaluate weighted force class 1 (FW=F1W) Evaluate

 Else

Evaluate weighted force class 2 (FW=F2W) Evaluate

 End If

 vj = vj + 0.5 * δt * FjW / mj for all j Integrate

End Do

End Do

This rewriting means that

1. Only the force terms require major modification, and then only those terms which are NOT class 1.

The integrator terms now need no knowledge of the RESPA repeat counts.

2. Any force terms that are not made RESPA aware effectively default to class 1, and thus will be dealt

with correctly (if not as efficiently as possible)

Further it is easily extended to any number of classes – only the last iteration of each class needs to be modified

to include the class(es) above it appropriately weighted.

This is the basic idea behind the new implementation. Over and above this it also provides facilities for arbitrary

depth RESPA, as opposed to hardwired to 4 as in the original implementation. This is covered by provision of

an iterator datatype and methods which act upon it which simulate the arbitrary depth nested loops that are

required. Further the new implementation is very simple to switch on and off during the simulation as opposed

the earlier method where this was more difficult. This is useful, for example, to ease handling “special”

timesteps where one would prefer to take a normal, non-RESPA, step. An example of this is the very first step

in the simulation, where avoiding the use of RESPA eases the implementation of restart runs, and for related

reasons steps where restart data need be written are most easily handled by a non-RESPA step as this preserves

backward compatibility with file formats for earlier versions of DL_POLY. A second use might be avoiding

using RESPA during equilibration, as during that period the system may be in non-physical states which makes

the integration of the equations of motion more sensitive. Another feature is that facilities are provided so that

the class of each term can be changed dynamically, again as opposed to being hardwired in like before.

Currently this is not exposed to the user, but could be in the future if required (and coupled with the arbitrary

depth support could provide a huge degree of control for knowledgeable users), and also looks forward to work

to be performed by Ian Bush during his EPSRC RSE Fellowship.

In terms of the code base the main parts of the implementation are in 3 modules. One provides the arbitrary

depth iterator type, one implements a general RESPA type scheme on top of that, and the final one interfaces to

DL_POLY in particular, and also holds any DL_POLY specific data. We hope that this structure will facilitate

the use of this code in other MD applications since the vast majority is NOT DL_POLY specific.

Results

All results presented are for DL_POLY compiled with the gnu compiler collection, with simply –O3 used for

optimisation.

The proposal addressed 2 major areas, isobaric ensembles and the use of rigid bodies within DL_POLY.

However, as we have re-implemented the whole of RESPA within DL_POLY we will start by presenting results

for the simplest case, NVE dynamics; the shorthand here refers to the system being simulated with a constant

number of particles (N), at a constant volume (V) and with a constant internal energy (E). The case chosen is a

small NaCl simulation, consisting of 27,000 particles. The simulation was carefully equilibrated and then

averages where taken over a final 80ps run. This case is chosen as it is relatively simple for RESPA, there are

only 2 classes and so only 1 parameter to vary (n1 in the above scheme). Given the simulation is within a

constant energy ensemble one would expect the use of RESPA to decrease the run time at the cost of poorer

energy conservation as a function of n1.

The first table shows the results, the runs being on 32 cores.

n1 Average Energy RMS Energy

Fluctuations

Time to solution Percentage

Improvement

Original Code -9.6757E+008 5.9435E+003 1986.664 0.00%

No RESPA -9.6757E+008 5.9435E+003 1985.851 0.04%

1 -9.6757E+008 5.9435E+003 2013.498 -1.33%

2 -9.6757E+008 6.1770E+003 1753.202 13.32%

4 -9.6757E+008 6.1494E+003 1648.449 20.52%

6 -9.6756E+008 6.5640E+003 1564.91 26.95%

8 -9.6756E+008 7.4027E+003 1546.719 28.44%

12 -9.6755E+008 1.1688E+004 1516.386 31.01%

16 -9.6753E+008 2.1880E+004 1498.641 32.56%

The results bear out the expectations. The first 3 rows are “null results” showing that the introduction of

RESPA has not broken the base code, and that RESPA with each class taking the same amount of iterations

again does not affect the integration of the equations of motion. However, it can be seen that it does have a

small negative affect on the run time. The reason for this is the structure of the loops in the short-ranged

coulomb term evaluation stage, which as currently structured means the test for this being a RESPA run is made

many times more than required. This is easily fixed and will be in the full release. On increasing n1 it can be

seen that for low values the same energy is returned and that the run time markedly decreases at the cost of

slowly increasing fluctuations in the energy. Higher values of n1 eventually affect the energy measured.

Pragmatically looking at the above results one might use a value of n1 of 2-8 depending upon the accuracy

required, with a nett gain of around 15-25% in performance.

RESPA also helps scaling. This is because the higher level classes describe interactions between larger groups

of atoms, and thus due to DL_POLY’s domain decomposed data distribution require more communication of

atomic data between processes. Hence if they are evaluated less often the reduction in communications

overhead improves the scaling of the code. This is shown in the figure below:

The second figure shows the percentage speed improvement. It can be seen that the benefit of RESPA is

greatest at the highest core accounts due to the improvements in scalability that it enables:

Thus the simplest case, constant number of particles (N), constant volume (V) and constant energy (E) is correct

and brings computational benefits to the user. Next we consider one of the focuses of the new work, constant

temperature and pressure simulations by a NPT simulation of the system above; everything is the same as the

previous case, only the ensemble has been changed from NVE to NPT. DL_POLY has many ways to

implement a NPT ensemble, here we use Hoover’s method, one of the more popular techniques. The

temperature was set to 500 K and the pressure to 1 atm, as this closely corresponds to the state point being

simulated in the NVE simulations performed above.

0 50 100 150 200 250 300

0

10

20

30

40

50

60

70

80

Cores

Sp
ee

d
 U

p

Original

n1=4

n1=8

0 50 100 150 200 250 300

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Cores

P
er

ce
n

ta
ge

 Im
p

ro
ve

m
en

t

n1=4

n1=8

n1 Average Energy Energy

Fluctuations

Average

Temperature

Average

Pressure

Time Improvement

1 -1.0126E+009 1.1281E+002 5.0000E+002 -9.9988E-001 2248.445 0.00%

2 -1.0126E+009 3.8674E+002 4.9998E+002 -1.0080E+000 2041.01 10.16%

4 -1.0126E+009 7.6880E+002 4.9991E+002 -1.0121E+000 1916.473 17.32%

6 -1.0126E+009 1.3541E+003 4.9977E+002 -1.0135E+000 1821.454 23.44%

 8 -1.0126E+009 2.5619E+003 4.9958E+002 -1.0142E+000 1790.221 25.60%

12 -1.0125E+009 6.6238E+003 4.9901E+002 -1.01490E+000 1801.473 24.81%

16 -1.0125E+009 1.3427E+004 4.9817E+002 -1.01530E+000 1778.23 26.44%

Again the runs presented are using 32 processes. A similar story to the NVE ensemble can be seen. Increasing

n1 reduces the run time (in fact in the above n1=1 is the original code before modification which is used as the

reference) at the cost of increasing errors in the integration of the equations of motion, as can be seen in the

constants drifting from their appropriate values, and the fluctuations in the energy increasing. The gain in

performance is similar though slightly less than in the NVE case, possibly reflecting the more expensive

integrator being used here, while the range of appropriate values for n1 is roughly as before.

The other main focus of this project was including rigid bodies in the RESPA scheme. This is illustrated in the

results below which is a NVE simulation of the ionic liquid 1,3-dimethylimidazolium chloride for 96 ps. Ionic

liquids are an interesting class of compounds which find increasing use as highly polar solvents in a number of

chemical processes. The simulation consisted of 44,352 ions, with the 1,3-dimethylimidazolium ions (pictured

below) modelled as rigid particles.

We again have a 2 class system, making comparison with the results above easy. As usual the simulation was

carefully equilibrated before any results were obtained. These results are shown in the table below, and again

32 cores were used:

n1 Average Energy Energy Fluctuation Time Percentage

Improvement

Original Code -1.9829E+006 9.4554E+000 1455.087 0.00%

2 -1.9829E+006 9.5713E+000 1300.287 11.91%

4 -1.9829E+006 1.0014E+001 1219.921 19.28%

6 -1.9829E+006 1.4197E+001 1181.498 23.16%

8 -1.9829E+006 2.1610E+001 1150.537 26.47%

12 -1.9827E+006 5.9599E+001 1132.658 28.47%

16 -1.9825E+006 1.1234E+002 1128.462 28.94%

Again we have a similar set of results which correspond with the expectations of the method, and again a 10-

25% improvement can be obtained with the RESPA parameter in the range 2-8 without a too marked

degradation of the quality of the results.

For this case the scaling with process count was also investigated, and a similar picture to above was obtained.

This is shown below

Again the newly implemented RESPA scheme achieves a noticeable improvement in the speed up.

Current Status
Unfortunately the modifications just missed the code freeze for the last release of DL_POLY, which occurred in

March 2016. However the code is under the CCPForge DL_POLY git repository, and will be included in the

0 20 40 60 80 100 120 140

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

Processes

Sp
ee

d
 U

p

Original

n1=4

next (non bug-fix) release of DL_POLY.

Conclusions and Summary

The work to extend the RESPA scheme to the whole of DL_POLY has been demonstrated. It has consistently

been shown to give at least a 15-25% improvement in performance at fixed process count, and has also been

shown to give noticeable improvements to the scalability of DL_POLY.

Acknowledgements

Ian Bush would like to acknowledge the usefulness of the original implementation written by Dr Asimina

Manioupolou which taught me many lessons about the pitfalls of implementing RESPA within a large code like

DL_POLY. The devil really is in the detail here!

This work was funded under the embedded CSE programme of the ARCHER UK National Supercomputing

Service (http://www.archer.ac.uk)

http://www.archer.ac.uk/

