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1 Introduction 
Modelling plasma turbulence in magnetically confined fusion (MCF) devices is a 
challenging task because the simulations must be able to resolve plasma processes 
that span space from the electron Larmor radius ρe (~10-5m) to the device minor 
radius a (~2m), and span time from the shortest turbulent eddy turnover time (~10-8s) 
to the energy confinement time (~1s). The gyrokinetic approach provides an efficient 
framework to solve for turbulent fluctuations with frequencies less than the ion 
cyclotron frequency, and this model captures the turbulence that is responsible for 
plasma transport.  
 
GS2 is an open source gyrokinetic simulation code that solves the gyrokinetic system 
of equations for the evolution of the perturbed distribution function, !, and the 
electromagnetic fields, Φ. This system consists of the gyrokinetic equation governing 
the evolution of !, and Maxwell’s equations for Φ.  
 
GS2 is written in Fortran, parallelised with MPI, and has been demonstrated to scale 
efficiently to O(1,000) cores for typical problems, greatly helped by recent successful 
efforts to that have improved both serial performance and scaling efficiency, and 
reduce runtimes by up to a factor 20 for a typical case at high numbers of cores.  
 
However, the scaling efficiency of the current code still drops significantly at large 
core counts (typically >4096), and additional improvements are required to improve 
further the prospects for more realistic and detailed simulations at higher resolutions. 
 
Each time step in GS2 involves four main operations: 

• N: non-linear terms in the advance of ! 

• L: collisionless advance of ! 

• C: impact of collisions on ! 

• F: field update 
 
with a full simulation time step consists of the operations “NLCFLC”. The work in 
this project focused on improving the scaling of F, as profiling studies demonstrate 
that F currently limits scaling performance at high core counts.  
 
F consists of two steps (carried out over independent domains): velocity space 
integrations of !, and multiplication of the vector result by the “response matrix” 
determined at initialisation. In recent GS2 upgrades the field routines were rewritten 
to allow much more efficient velocity space integration using sub-communicators.  
 
Whilst these changes have improved performance, attempts to minimise 
communication have introduced a load imbalance that significantly degrades the 
scaling of F above a certain core count. Poor F scaling is the main bottleneck that 
degrades the efficiency of our test case at around 4,096 cores. 
 
This work was funded under the embedded CSE programme of the ARCHER UK 
National Supercomputing Service (http://www.archer.ac.uk). 
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2 Simulation Functionality 
GS2 is configurable and can run a range of different types of simulation.  We have 
already outlined that there are 3 main operations (aside from the field update) that can 
be undertaken: 

• Linear (collisionless advance of !) 

• Non-linear advance of ! 

• Impact of collisions (of particles) on ! 
 
Simulations can run in a purely linear node, or linear with any combination of non-
linear and collisions.  Enabling non-linear and collision functionality significantly 
increases computational costs, with collisions in particular being very costly.  
However, none of these options impact the computational cost of the field update in 
GS2, so they should not directly impact the areas of the code we are aiming to 
optimise with this project. 
 
There are three different fields that can used in used in simulations: 

• Φ: The basic electrostatic potential 
• 3 ∥: The parallel vector potential 

• 5 ∥: The perturbed parallel magnetic field 
 
Φ is required, but 3 ∥ and 5 ∥ are optional, and can be enabled or disabled for 
any given simulation.  Each field requires similar amounts of work, so enabling 
all 3 fields will make the field calculation approximately 3 times as long. 
 
GS2 lets users specify a data layout for the ! data object to provide some guidance on 
how to parallelise the array storing the perturbed distribution functions for all the 
plasma species.  GS2 uses 5 different indices, denoted as follows by the characters 
E, F, G, H and I: 

• E: Fourier wavenumber in the X direction in space 

• F: Fourier wavenumber in the Y direction in space 

• G: Pitch angle 

• H: Energy 

• I: Number of particle species 
 
GS2 supports six different data layouts; EFGHI, FEGHI, GFEHI, FEHGI, GEFHI, GHEFI. The 
layout is chosen at run time by the user (through the input parameter file) and controls 
how the data domain in GS2 is distributed across processes by specifying the order in 
which individual dimensions in the data domain are distributed (split up). For 
instance, the EFGHI layout will decompose I first and E last (depending on the number 
of processes used), whereas the GHEFI layout will decompose I first and G last.   
 
GS2 undertakes an initialisation process prior to simulation, where the initial fields 
are calculated and data decomposition functionality is setup.  This initialisation step 
can also take a significant amount of time, and grows exponentially with the number 
of fields used (as significant numbers of field calculations have to be performed to 
calculate the initial fields).  This means that any optimisation of the field simulation 
functionality will also improve the performance of the initialisation process. 
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2.1 ingen 
For any given GS2 input file (which specifies the simulation to be carried out, including 

the domain decomposition layout) the program ingen provides a list of recommended 
process counts (or “sweet spots”) for the GS2 simulation. These recommendations are 
computed from the data in the input file, and aim to split the data domain as evenly as 
possible to achieve good “load-balancing”.  The primary list of recommended process 

counts is based on the main data layout, g_lo (used for the linear parts of the 

simulations).  ingen also provides lists of process counts that are suitable for the 

nonlinear parts of the calculations (referred to as xxf_lo and yxf_lo process counts) 

which may differ from the process counts recommended for g_lo.   
 3 Field Calculation in GS2 
The electromagnetic fields in GS2, Φ(θ,x,y), depend only on 3-D real space (not the 
5-D space of !, and are determined using species summed velocity space integrals of 
!. Note that in GS2 Φ is not distributed and is known locally on all processes (i.e. the 
full Φ is on all processes). 
 
The latest field routines in GS2 are structured so that each processor need only 
contribute to field calculations for the specific " and # values for which it has 
assigned in the decomposition of !, using MPI allreduce over sub-communicators to 
perform the integrations.  
 
Without further communication each processor only calculates Φ for the portion of 
the " and # domain which is held locally. This restricts how the field solve may be 
decomposed amongst processors when " or # are distributed. A further complication 
arises from the standard parallel boundary condition in these flux tube simulations 
where different "’s are coupled at the ends of the θ grid. The coupling pattern 
depends on both # and other input parameters. 
 
GS2 has a concept of cells, which corresponds to a specific " and # part of Φ, and the 
of a supercells, which are the set of cells coupled by the parallel boundary condition 
of the flux tube. 
 
The field solve then consists of two operations: firstly a velocity space integration of 
! for each field being used in the simulation; followed by a matrix-vector product to 
update each field for each independent supercell.  The velocity space integration 
calculates the vector that is used in the matrix-vector product, with the matrix (known 
as the field response matrix) constructed during the initialisation of GS2 (using the 
field calculation code). 
 
The size of the supercell depends on the number of connected cells, which varies with 
#. This means the work associated with matrix operations varies substantially 
between supercells. In particular the size of the field response matrix is given by (" 
*nfield* "_in_supercell)2 where "_in_supercell can typically vary from 1 to O(100) 
for current problems. 
 
Therefore, it can be seen that if " and # are distributed by the parallelisation of ! 
there could be significant load balance issues associated with the field calculations, as 
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the amount of work in the matrix operations will vary with the specific ! and " 
portions a process has. 
 
However, the current code does not necessarily fully decompose the matrix-vector 
operation across all processes in the supercell, as communication costs increase with 
more participants.  Currently, the matrix-vector supercell calculation decomposition 
considers each supercell in turn and: 

1. Calculates a balanced blocksize for all the processes in the supercell. 
2. Implements an actual blocksize which is Max(balanced blocksize, 

user_defined_value), which can introduce a load imbalance to reduce 
communication costs. 

3. Records allocated work, and assigns blocks of work to available processes, 
starting with those processes with the least amount of work already assigned. 
 

This current scheme provides a coarse way to tune the relative load imbalance and 
communication costs associated with the field solve.  
 4 Initial performance 
Prior to any optimisation work it’s important to understand the current performance of 
the code.  In this section we aim to capture the performance and scaling of GS2 on a 
representative simulation, and evaluate where performance problems exist.  The 
simulation parameters (GS2 input file) used to collect the performance results 
presented in this report is included in Appendix A at the end of the report. 
 
We have performed simulations using 3 of the 6 GS2 layout types; !"#$%, "!#$%, and 
#$!"%;  as these are the data layouts commonly for simulations on systems such as 
ARCHER.  We have also performed simulations using 1, 2, and 3 fields active in the 
simulations to evaluate the impact of varying fields on GS2. 
 4.1 Process Counts 
The following process counts are suggested as sweet spots for the layouts we have 
chosen to profile: 
 

• #$!"%: 448, 576, 1344, 4032, 8064 

• !"#$%: 512, 1024, 1536, 2048, 3072, 3584, 4096, 8192 

• "!#$%: 512, 1024, 1536, 2048, 3072, 3584, 4096, 8192 
 
We have used a subset of the above process counts for our scaling/performance 
benchmarking. 4.2 Linear Performance 
The first set of results we collected on ARCHER were only undertaking linear 

simulations (i.e. using the GS2 input parameter nonlinear_mode='off').  
Figures 1 and 2 show the runtime of the initialisation and advance (main simulation 
calculation) parts of GS2 for varying numbers of processes on ARCHER. 
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Figure 1: Initialisation time for linear simulations 
 

 
Figure 2: Advance time for linear simulation 

 4.2.1 Linear initialisation time 
Figures 3-5 show the initialisation time for the different numbers of fields separately, 
to enable comparing data layouts in more detail. 
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Figure 3: Initialisation time for a single field 

 

 
Figure 4: Initialisation time for two fields 

 
 



 9 

 
Figure 5: Initialisation time for three fields 

 
Looking at the graphs for initialisation time we can see that the !"#$% layout 
initialisation takes significantly longer than the other two layouts, and does not really 
scale as more processes are used.  "!#$% is similarly costly at low process counts, but 
scales better and can give the quickest initialisation at high process counts, and #$"!% 
generally is the quickest to initialise, but similar to !"#$% it does not scale very well 
when using more processes.   
 
We can also see that moving for a single field to three fields can significantly increase 
the run time (and therefore the computational cost) of the initialisation, from of the 
order of 0.2-0.6 minutes for 1 field to around 3-11 minutes for 3 fields. 4.2.2 Linear advance time 
Figures 6-8 show the advance time for the different numbers of fields separately, to 
enable comparing data layouts in more detail. 



 10

 
Figure 6: Advance time for 1 field 

 

 
Figure 7: Advance time for two fields 
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Figure 8: Advance time for three fields 

 
Looking at the advance time, we can see that as with the initialisation time !"#$% 
provides the best performance, although it does not scale well. #$!"% and $#!"% have 
similar performance profiles, scaling better than !"#$% but never achieving its 
absolute performance. 
 
For all the layouts we can see that scaling becomes a problem when using large 
process counts.  If we profile GS2, using CrayPat, then we can gain some more 
detailed understanding of what parts of the code are being used, what parts are scaling 
well, and what the level of MPI communication is on different process counts. 
 4.2.3 Linear profiling data 
Investigations of the detailed performance of GS2 on the linear test case was 
undertaken with CrayPat to identify the subroutines consuming the more 
computational time for a given run, and the amount of MPI communications 
performed for the same run.   
 
We profiled GS2 on the small and large process counts used for the performance 
benchmarks previously discussed, specifically: 

• !"#$%: 448 and 4032 processes 

• #$!"%: 512 and 4096 processes 

• $#!"%: 512 and 4096 processes 
 
Profiling result for &'()*: 
 
1 field, 512 processes: 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 12,389.4 |      -- |    -- |Total 
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|-------------------------------------------------------------------------- 
|  53.9% |  6,676.5 |      -- |    -- |MPI 
||------------------------------------------------------------------------- 
||  29.3% |  3,630.5 | 1,213.5 | 25.1% |mpi_bcast 
||   9.6% |  1,183.5 | 1,815.5 | 60.7% |MPI_ALLREDUCE 
||   7.9% |    982.1 |   752.9 | 43.5% |MPI_REDUCE 
||   6.1% |    755.4 |    12.6 |  1.6% |mpi_comm_split 
||========================================================================= 
|  38.4% |  4,759.0 |      -- |    -- |USER 
||------------------------------------------------------------------------- 
||  14.4% |  1,789.1 |   108.9 |  5.8% |mat_inv_mp_inverse_gj_ 
||   5.8% |    723.3 |   122.7 | 14.5% |dist_fn_mp_get_source_term_ 
||   5.1% |    635.4 |    86.6 | 12.0% |dist_fn_mp_invert_rhs_1_ 
||   3.6% |    445.7 |   106.3 | 19.3% |dist_fnget_source_term_mp_set_source_ 
||   1.6% |    198.6 |   288.4 | 59.3% |dist_fn_mp_invert_rhs_linked_ 
||   1.2% |    146.8 |    80.2 | 35.4% |dist_fn_mp_getan_nogath_ 
||========================================================================= 
|   7.6% |    936.5 |      -- |    -- |ETC 
||------------------------------------------------------------------------- 
||   5.2% |    639.0 |   166.0 | 20.7% |__intel_memset 
||   2.0% |    245.0 |   109.0 | 30.9% |__intel_ssse3_rep_memcpy 
|========================================================================== 

 
1 field, 4096 processes: 
  Samp% |    Samp |    Imb. |  Imb. |Group 
        |         |    Samp | Samp% | Function 
        |         |         |       |  PE=HIDE 
        
 100.0% | 9,638.4 |      -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  80.2% | 7,727.3 |      -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  49.8% | 4,801.5 |   839.5 | 14.9% |mpi_bcast 
||  16.7% | 1,613.0 | 1,185.0 | 42.4% |MPI_ALLREDUCE 
||   7.6% |   730.0 | 1,045.0 | 58.9% |MPI_REDUCE 
||   3.2% |   307.2 |    17.8 |  5.5% |mpi_comm_split 
||   2.6% |   248.3 |   109.7 | 30.7% |mpi_waitall 
||============================================================================ 
|  16.9% | 1,632.6 |      -- |    -- |USER 
||---------------------------------------------------------------------------- 
||   7.3% |   705.4 |   106.6 | 13.1% |mat_inv_mp_inverse_gj_ 
||   2.4% |   230.5 |    67.5 | 22.6% |redistribute_mp_c_redist_33_mpi_copy_nonblock_ 
||   1.2% |   111.0 |    47.0 | 29.7% |dist_fn_mp_get_source_term_ 
||============================================================================ 
|   2.7% |   262.1 |      -- |    -- |ETC 
||---------------------------------------------------------------------------- 
||   1.6% |   154.0 |    67.0 | 30.3% |__intel_memset 
|============================================================================= 

 
It is evident from the 1 field profiling that MPI significantly dominates performance 
both at the small and large process counts.  MPI accounts for ~55% of the runtime at 
512 processes, and over 80% of the runtime at 4096 processes.  MPI broadcast is the 
most costly MPI routine, followed by allreduce.   
 
Broadcast is used in a number of places in the code, including initialisation, progress 
checking, and the fields update.  Analysis of the increase in broadcast time shows that 
a significant proportion of the increase in the broadcast time comes from the fields 
calculation functionality.   
 
Allreduce is entirely associated with fields calculation, so the increased in impact of 
allreduce on the overall profile is directly related to the fields. 
 
However, 1 field linear calculations do not have large amounts of work associated 
with them, meaning initialisation costs, and field calculations, dominate a short 
simulation such as the one profiled for these results.  Therefore, examining the 2 and 
3 field simulations may give us a fuller picture of the scaling of GS2. 
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2 fields, 512 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 32,399.2 |      -- |    -- |Total 
|-------------------------------------------------------------------------- 
|  62.7% | 20,306.1 |      -- |    -- |USER 
||------------------------------------------------------------------------- 
||  50.1% | 16,234.1 |   872.9 |  5.1% |mat_inv_mp_inverse_gj_ 
||   2.4% |    773.4 |    87.6 | 10.2% |dist_fn_mp_get_source_term_ 
||   2.1% |    686.7 |    78.3 | 10.2% |dist_fn_mp_invert_rhs_1_ 
||   1.5% |    478.8 |    72.2 | 13.1% |dist_fnget_source_term_mp_set_source_ 
||   1.3% |    418.7 |    96.3 | 18.7% |dist_fn_mp_getan_nogath_ 
||   1.0% |    340.0 |   119.0 | 26.0% |le_grids_mp_integrate_species_master_ 
||========================================================================= 
|  33.1% | 10,735.6 |      -- |    -- |MPI 
||------------------------------------------------------------------------- 
||  13.7% |  4,426.5 | 1,342.5 | 23.3% |mpi_bcast 
||  11.8% |  3,818.1 | 7,204.9 | 65.5% |MPI_ALLREDUCE 
||   6.0% |  1,946.0 | 1,067.0 | 35.5% |MPI_REDUCE 
||========================================================================= 
|   4.1% |  1,336.9 |      -- |    -- |ETC 
||------------------------------------------------------------------------- 
||   2.8% |    893.6 |   216.4 | 19.5% |__intel_memset 
||   1.2% |    378.7 |   129.3 | 25.5% |__intel_ssse3_rep_memcpy 
|========================================================================== 

 
2 fields, 4096 processes 
  Samp% |     Samp |     Imb. |  Imb. |Group 
        |          |     Samp | Samp% | Function 
        |          |          |       |  PE=HIDE 
        
 100.0% | 26,344.0 |       -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  49.3% | 12,985.1 |       -- |    -- |USER 
||---------------------------------------------------------------------------- 
||  43.9% | 11,567.3 |  1,997.7 | 14.7% |mat_inv_mp_inverse_gj_ 
||   1.2% |    312.2 |     95.8 | 23.5% |redistribute_mp_c_redist_33_mpi_copy_nonblock 
||============================================================================ 
|  49.0% | 12,909.8 |       -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  21.9% |  5,766.7 | 10,028.3 | 63.5% |MPI_ALLREDUCE 
||  20.5% |  5,393.7 |    950.3 | 15.0% |mpi_bcast 
||   3.4% |    890.3 |  1,324.7 | 59.8% |MPI_REDUCE 
||   2.0% |    515.0 |    245.0 | 32.2% |mpi_waitall 
||   1.2% |    306.9 |     14.1 |  4.4% |mpi_comm_split 
||============================================================================ 
|   1.6% |    430.3 |       -- |    -- |ETC 
|============================================================================= 

 

We can see from the profiles above that moving to the 2 field calculations means GS2 
is spending more time performance the calculations to initialise and update the fields 
(mat_inv_mp_inverse_gj_ is a routine involved in the initialisation of the fields). 
 
However, we can still see similar patterns associated with the MPI communications 
when moving from 512 processes to 4096 processes, the broadcast and allreduce time 
increases, and this time can be attributed to the field calculations.  Indeed, in this 2 
field simulation we now see MPI allreduce becoming the most costly MPI routine at 
4096 cores. 
 
3 fields, 512 processes 
  Samp% |     Samp |     Imb. |  Imb. |Group 
        |          |     Samp | Samp% | Function 
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        |          |          |       |  PE=HIDE 
        
 100.0% | 82,205.3 |       -- |    -- |Total 
|----------------------------------------------------------------- 
|  76.6% | 62,965.7 |       -- |    -- |USER 
||---------------------------------------------------------------- 
||  70.0% | 57,576.2 |  2,139.8 |  3.6% |mat_inv_mp_inverse_gj_ 
||   1.0% |    831.0 |    131.0 | 13.6% |dist_fn_mp_get_source_term_ 
||================================================================ 
|  21.3% | 17,520.1 |       -- |    -- |MPI 
||---------------------------------------------------------------- 
||  10.4% |  8,530.0 | 22,185.0 | 72.4% |MPI_ALLREDUCE 
||   6.9% |  5,691.9 |  1,475.1 | 20.6% |mpi_bcast 
||   3.3% |  2,725.0 |  1,524.0 | 35.9% |MPI_REDUCE 
||================================================================ 
|   2.1% |  1,698.2 |       -- |    -- |ETC 
||---------------------------------------------------------------- 
||   1.4% |  1,132.7 |    253.3 | 18.3% |__intel_memset 
|================================================================= 

 
3 fields, 4096 processes 
  Samp% |     Samp |     Imb. |  Imb. |Group 
        |          |     Samp | Samp% | Function 
        |          |          |       |  PE=HIDE 
        
 100.0% | 69,154.0 |       -- |    -- |Total 
|------------------------------------------------------------ 
|  67.2% | 46,486.6 |       -- |    -- |USER 
||----------------------------------------------------------- 
||  64.3% | 44,472.2 |  3,166.8 |  6.6% |mat_inv_mp_inverse_gj_ 
||=========================================================== 
|  31.9% | 22,045.2 |       -- |    -- |MPI 
||----------------------------------------------------------- 
||  19.9% | 13,736.1 | 30,416.9 | 68.9% |MPI_ALLREDUCE 
||   9.3% |  6,453.4 |    997.6 | 13.4% |mpi_bcast 
||   1.8% |  1,253.6 |  1,930.4 | 60.6% |MPI_REDUCE 
|============================================================ 
 

Examining the profiles for the 3 field simulations we can see the same trend observed 
moving from 1 field to 2 fields, the field initialisation functionality is becoming more 
costly, and the MPI associated with the fields calculations is dominating the MPI part 
of the code. 
 
The profiles of !"#$% match the scaling that is demonstrated in Figures 1-8, i.e. that 
the initialisation does not scale well, and gets significantly more costly as multiple 
fields are considered.  We can also see from the graphs that the advanced time for 
!"#$% is significantly smaller than the initialisation time (for the number of simulation 
steps we have profiled), which means it is hard to draw any conclusions on the 
advance time performance from the above profiles. 
 
However, the other 2 layouts ("!#$% and #$"!%) exhibit different scaling 
characteristics and runtimes to !"#$% so we examine their profiles next to see if we 
can gain further understanding of the performance of the fields code (and GS2 in 
general) from them: 
 

Profiling result for &'()*: 
 
 

1 field, 512 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 11,025.3 |      -- |    -- |Total 
|-------------------------------------------------------------------------- 
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|  50.9% |  5,613.9 |      -- |    -- |MPI 
||------------------------------------------------------------------------- 
||  31.9% |  3,517.0 | 1,094.0 | 23.8% |mpi_bcast 
||   8.8% |    970.8 | 1,754.2 | 64.5% |MPI_ALLREDUCE 
||   7.4% |    815.1 |   701.9 | 46.4% |MPI_REDUCE 
||   1.8% |    195.6 |    11.4 |  5.5% |mpi_comm_split 
||========================================================================= 
|  40.1% |  4,422.9 |      -- |    -- |USER 
||------------------------------------------------------------------------- 
||  16.2% |  1,782.2 |    63.8 |  3.5% |mat_inv_mp_inverse_gj_ 
||   5.3% |    587.2 |    67.8 | 10.4% |dist_fn_mp_invert_rhs_1_ 
||   4.3% |    474.9 |    68.1 | 12.6% |dist_fn_mp_get_source_term_ 
||   3.5% |    390.0 |    65.0 | 14.3% |dist_fnget_source_term_mp_set_source_ 
||   1.8% |    194.2 |   241.8 | 55.6% |dist_fn_mp_invert_rhs_linked_ 
||   1.3% |    145.2 |    42.8 | 22.8% |dist_fn_mp_getan_nogath_ 
||   1.0% |    115.3 |    57.7 | 33.4% |le_grids_mp_integrate_species_master_ 
||   1.0% |    111.8 |   317.2 | 74.1% |redistribute_mp_c_fill_3_ 
||========================================================================= 
|   8.8% |    970.9 |      -- |    -- |ETC 
||------------------------------------------------------------------------- 
||   5.8% |    638.5 |   101.5 | 13.7% |__intel_memset 
||   2.2% |    241.7 |    64.3 | 21.1% |__intel_ssse3_rep_memcpy 
|========================================================================== 
 

1 field, 4096 processes 
  Samp% |    Samp |    Imb. |  Imb. |Group 
        |         |    Samp | Samp% | Function 
        |         |         |       |  PE=HIDE 
        
 100.0% | 8,182.4 |      -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  87.0% | 7,118.8 |      -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  57.1% | 4,672.3 |   877.7 | 15.8% |mpi_bcast 
||   9.7% |   795.3 | 1,488.7 | 65.2% |MPI_REDUCE 
||   9.6% |   787.9 |   280.1 | 26.2% |MPI_ALLREDUCE 
||   4.5% |   368.9 |    72.1 | 16.3% |MPI_ALLGATHERV 
||   3.1% |   253.8 |    41.2 | 14.0% |mpi_waitall 
||   2.4% |   200.4 |    13.6 |  6.4% |mpi_comm_split 
||============================================================================ 
|   9.5% |   777.8 |      -- |    -- |USER 
||---------------------------------------------------------------------------- 
||   2.2% |   177.2 |    52.8 | 22.9% |redistribute_mp_c_redist_33_mpi_copy_nonblock_ 
||   1.0% |    83.8 |    36.2 | 30.2% |dist_fn_mp_invert_rhs_1_ 
||============================================================================ 
|   3.3% |   269.6 |      -- |    -- |ETC 
||---------------------------------------------------------------------------- 
||   1.6% |   131.5 |    53.5 | 28.9% |__intel_memset 
|============================================================================= 
 

With this layout we can see different performance moving from 512 to 4096 
processes.  Firstly, we can see that at the low process count MPI isn’t as dominant, 
and we see computational routines associated with calculating the fields update and 
linear timestep appearing in the profile.  MPI broadcast is still the dominant MPI call, 
with allreduce the second, and one further investigation, as with the !"#$% profiles, all 
the allreduce time, and a portion of the broadcast time can is attributable to the fields 
calculations. 
 
When moving to 4096 processes we can see the MPI becomes completely dominant, 
the computational part of the code now only accounts for 10% of the runtime, and the 
initialisation of the fields is not appearing as a costly feature.  This matches well with 
the improved scaling of the initialisation (as compared to !"#$%) that we see in 
Figures 3-5. 
 
We can see that broadcast takes a much higher proportion of the runtime, and we can 
attribute this to the fields calculations.  Furthermore, the MPI allgatherv routine also 
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appears in the profile for 4096 cores, which is called from the fields calculation 
routines. 
 

2 fields, 512 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 31,556.2 |      -- |    -- |Total 
|-------------------------------------------------------------------------- 
|  63.1% | 19,904.8 |      -- |    -- |USER 
||------------------------------------------------------------------------- 
||  51.3% | 16,173.6 |   479.4 |  2.9% |mat_inv_mp_inverse_gj_ 
||   2.0% |    637.9 |    79.1 | 11.0% |dist_fn_mp_invert_rhs_1_ 
||   1.6% |    519.1 |    87.9 | 14.5% |dist_fn_mp_get_source_term_ 
||   1.3% |    418.9 |    74.1 | 15.1% |dist_fnget_source_term_mp_set_source_ 
||   1.3% |    398.2 |    85.8 | 17.8% |dist_fn_mp_getan_nogath_ 
||   1.1% |    343.4 |   106.6 | 23.7% |le_grids_mp_integrate_species_master_ 
||========================================================================= 
|  32.6% | 10,287.6 |      -- |    -- |MPI 
||------------------------------------------------------------------------- 
||  16.9% |  5,335.4 | 1,350.6 | 20.2% |mpi_bcast 
||   9.1% |  2,868.3 | 7,014.7 | 71.1% |MPI_ALLREDUCE 
||   5.4% |  1,707.3 | 1,076.7 | 38.7% |MPI_REDUCE 
||========================================================================= 
|   4.3% |  1,342.8 |      -- |    -- |ETC 
||------------------------------------------------------------------------- 
||   2.8% |    872.9 |   188.1 | 17.8% |__intel_memset 
||   1.2% |    366.9 |   131.1 | 26.4% |__intel_ssse3_rep_memcpy 
|========================================================================== 
 

2 fields, 4096 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 14,803.9 |      -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  87.5% | 12,959.2 |      -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  40.0% |  5,917.4 | 1,179.6 | 16.6% |mpi_bcast 
||  23.5% |  3,479.2 |   537.8 | 13.4% |MPI_ALLGATHERV 
||  13.2% |  1,954.5 |   717.5 | 26.9% |MPI_ALLREDUCE 
||   7.3% |  1,083.2 | 1,849.8 | 63.1% |MPI_REDUCE 
||   2.0% |    292.7 |    42.3 | 12.6% |mpi_waitall 
||   1.3% |    191.0 |    15.0 |  7.3% |mpi_comm_split 
||============================================================================ 
|   9.8% |  1,447.3 |      -- |    -- |USER 
||---------------------------------------------------------------------------- 
||   3.0% |    450.7 | 3,305.3 | 88.0% |mat_inv_mp_inverse_gj_ 
||   1.5% |    217.4 |    63.6 | 22.6% |redistribute_mp_c_redist_33_mpi_copy_nonblock_ 
||   1.0% |    145.8 |   113.2 | 43.7% |fields_local_mp_advance_local_ 
||============================================================================ 
|   2.6% |    380.1 |      -- |    -- |ETC 
||---------------------------------------------------------------------------- 
||   1.1% |    167.1 |    63.9 | 27.6% |__intel_memset 
|============================================================================= 

 
Moving to 2 fields, we can see the trends apparent become more extreme with more 
fields.  We can see that at 4096 cores the allgatherv becomes much more important in 
terms of the runtime, and this is a direct consequence of the fields calculation. 
 
We can see that the fields initialisation (mat_inv_mp_inverse_gj_) is still important at 
512 processes, but much less so at 4096 cores. 
 
 

3 fields, 512 processes 
  Samp% |     Samp |     Imb. |  Imb. |Group 
        |          |     Samp | Samp% | Function 
        |          |          |       |  PE=HIDE 
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 100.0% | 79,161.2 |       -- |    -- |Total 
|------------------------------------------------------------ 
|  78.7% | 62,285.4 |       -- |    -- |USER 
||----------------------------------------------------------- 
||  72.4% | 57,324.6 |  1,300.4 |  2.2% |mat_inv_mp_inverse_gj_ 
||=========================================================== 
|  19.1% | 15,141.8 |       -- |    -- |MPI 
||----------------------------------------------------------- 
||   8.3% |  6,601.7 | 21,817.3 | 76.9% |MPI_ALLREDUCE 
||   7.3% |  5,770.3 |  1,374.7 | 19.3% |mpi_bcast 
||   3.1% |  2,446.4 |  1,459.6 | 37.4% |MPI_REDUCE 
||=========================================================== 
|   2.2% |  1,712.7 |       -- |    -- |ETC 
||----------------------------------------------------------- 
||   1.4% |  1,119.5 |    177.5 | 13.7% |__intel_memset 
|============================================================ 
 

3 fields, 4096 processes 
  Samp% |     Samp |     Imb. |  Imb. |Group 
        |          |     Samp | Samp% | Function 
        |          |          |       |  PE=HIDE 
        
 100.0% | 28,895.4 |       -- |    -- |Total 
|------------------------------------------------------------ 
|  88.3% | 25,508.1 |       -- |    -- |MPI 
||----------------------------------------------------------- 
||  43.4% | 12,548.4 |  1,981.6 | 13.6% |MPI_ALLGATHERV 
||  24.6% |  7,122.6 |  1,416.4 | 16.6% |mpi_bcast 
||  13.6% |  3,941.9 |  2,774.1 | 41.3% |MPI_ALLREDUCE 
||   5.0% |  1,433.1 |  2,258.9 | 61.2% |MPI_REDUCE 
||=========================================================== 
|   9.9% |  2,870.7 |       -- |    -- |USER 
||----------------------------------------------------------- 
||   5.7% |  1,644.8 | 11,949.2 | 87.9% |mat_inv_mp_inverse_gj_ 
||=========================================================== 
|   1.7% |    499.4 |       -- |    -- |ETC 
|============================================================ 
 

Finally, using 3 fields it is apparent that the field communication code is dominating 
MPI performance at both 512 and 4096 processes (with allreduce and allgatherv being 
the most costly MPI functions, both only used by the fields calculations). 
 

Similar performance features can be seen when investigating the !"#$s layout, 
profiles are available in Appendix B. 
 
We can see from the profiles and scaling graphs that have been presented that the 
performance of GS2 does not improve by increase the processes used, once we go 
beyond a certain number of processes, and that the scaling issues are associated with 
MPI costs dominating performance. 
 5 WP1 Improving the performance of the velocity space integration 
 
The current code calculates the velocity space integration by performing a pre-
calculation on the % array for each field of the following form (or similar form, the 
actual calculate varies by field): 
 
do iglo = g_lo%llim_proc, g_lo%ulim_proc 
  do isgn = 1, 2 
    g0(:,isgn,iglo) = aj0(:,iglo)*gnew(:,isgn,iglo) 
  end do 
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end do 
 

Where g0 is a temporary array used to accumulate the modified ! data prior to the 

integration g_lo is the ! data decomposition structure, and iglo iterates through all 
the points this process has in the ! decomposition.   
 
Once this has been performed then each process then undertakes the velocity space 
integration by iterating through all points they have in the ! decomposition and 
incorporating it into its velocity space integration total, then finally all processes that 
have this ", $ point in the ! decomposition combine their data to calculate the final 
integration for those ", $ points; as follows: 
do iglo = g_lo%llim_proc, g_lo%ulim_proc 
   ik = ik_idx(g_lo,iglo) 
   it = it_idx(g_lo,iglo) 
   ie = ie_idx(g_lo,iglo) 
   is = is_idx(g_lo,iglo) 
   il = il_idx(g_lo,iglo) 
           
   total(:, it, ik) = total(:, it, ik) + 
weights(is)*w(ie)*wl(:,il)*(g(:,1,iglo)+g(:,2,iglo)) 
end do 
 
call sum_allreduce_sub(total,g_lo%xyblock_comm) 
 

This code relies on the ! decomposition being regular so that ", $ points are common 
to groups of processes, so that the code can construct MPI sub-communicators to 
match those ", $ points and enable the allreduce in the above code to ensure every 
process with that set of ", $ points gets the correct final result. 
 
The above code will perform an allreduce for each field in the calculation, and for 
every block of ", $ points (every sub-communicator that has been constructed across 
", $ points). 
 
Two approaches to optimising the velocity space integration functionality outlined 
above were considered.  The first approach (localised velocity integration) 
redistributes the ! data prior to the integration calculation to enable the integration to 
be calculated locally.  This process involves creating a new data distribution in GS2, 
mapping the ! data to that decomposition, and then performing integration over the 
re-mapped data. 
 
The second approach (localised field calculation) extends this work beyond the 
velocity space integration to take advantage of this new data decomposition in the 
field calculations, implements field calculations based on this layout to re-use the 
redistribution undertaken for the fields calculation as well (and thus removing the 
requirement to redistribute the result of the integration). 
 5.1 Localised velocity integration 
As can be seen from the code outlined above, the current velocity space integration 
operates on the ! data object.  It undertakes the velocity space integration locally on ! 
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and then send that partial velocity space integration to all other processes who have 
part of those !, # points in $.  This has the potential to be a very efficient method 
where all of ! and # are local to a process (for a given part of %, ', (), as no 
communications would be necessary to perform the integration, it would simply 
require local calculations. 
 
However, when using large process counts are used for a simulation ! and # are very 
likely to be split across processes, with multiple processes having parts of the data for 
a given ! and # point. 
 
An alternative approach would be to redistribute the $ data so that all the data for a 
given !, # point is guaranteed to be on a single process, regardless of the 
decomposition of that data in $.   
 
The benefits of this approach is that, although communication would have to be 
undertaken prior to the integration to get the data from $ to the new distribution, this 
communication can be done with point-to-point communications (between the 
processes who have the data in $ and those that will have it in the new 
decomposition) rather than collective routines, as it currently the case for the 
integration; and that the data only needs to be redistributed once regardless of the 
number of fields used (so the same amount of data needs to be redistributed to 
calculated 1 fields as it does for 3 fields).   
 
There is a further step that would be required to enable such a velocity space 
integration, the communication of the final integral back to the processes that need it 
after the calculation has taken place.  However, as with the $ redistribute, this can be 
done with point-to-point communications, rather than collective operations, and the 
data for all the fields can be communicated at the same time, meaning you don’t need 
such a communication for each of the fields. 
 
Algorithmically, the proposal is to move from this approach: 
 
for each field 
  calculate local velocity space integration 
  communicate to calculate global velocity space  
  integration with all processes involved in that section    
  of data 
end for 

 
To this approach: 
 
redistributed the data so that only one process has all 
the data for the velocity space calculation of a given 
point 
for each field 
  calculate global velocity space integration for all the  
  points I own 
end for 
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communicate global velocity space to all process that 
have part of that space in the original data 
decomposition 
 5.1.1 !-fields Data Decomposition 
GS2 has a framework for moving data between different data distributions or 
decompositions.  It has redistribution routine, which use point-to-point MPI messages 
to send and receive data, and layout objects that specify how data is decomposed 
across processes and how to convert one layout into another. 
 

Storing the " data for linear calculations uses the g_lo layout which, as has already 
been discussed, decomposes data across processes using the layout string passed in 
the input file for the simulation (i.e. #$%&').   
 
There are other layouts in GS2, ones for transforming the data between normal space 
(") to Fourier space for the non-linear calculations; and for transforming from " into 
a format that makes calculating collisions simpler. 
 
To enable local calculation of velocity space integration we are going to define a new 

layout, gf_lo.  This layout parallelises over # and $, with everything else local to a 
process (i.e. for a given # and $ point all the associated data will be on a single 
process). 
 
To enable the redistribution between g_lo and gf_lo data decompositions we need 
to create some new data redistribution routines to be able send data from a 6-D layout 
to a 3-D layout, and vice versa.  This involved adding the routines c_redist_36, 

c_redist_36_inv, and associated blocking and non-blocking communication 
routines called from these two redistribute functions. 
To construct the gf_lo data decomposition we implemented two different options: 

1. Simple distribution that takes all #, $ (i.e. # * $ points) and assigns them to 
the first M processes.  This will mean that processes with IDs from 0 to M-1 
get points in the gf_lo data domain, and processes M to N (where N is the 

total number of processes running the simulation) get no data in gf_lo. 
2. Scatter distribution that takes all #, $ (i.e. # * $ points) and attempts to assign 

them evenly across the distribution of processes running the simulation.  In 
practice this means that if you have N processes and P points, and P=N/2, then 
every other process would get a point in the gf_lo data domain.  This 
approach is attempting to utilise all computational nodes being used to run the 
simulation, but not all the processes (as using all the nodes will enable using 
all the network connections, processor caches, etc… available to the 
simulation). 

 
Which gf_lo data decomposition is used can be set by a new GS2 input parameter 

(in the layouts_knobs input list): 

• simple_gf_decomposition 
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Where simple_gf_decomposition = .true. uses decomposition technique 

1 above, and simple_gf_decomposition = .false. uses decomposition 
technique 2 above (scatter decomposition). 
 

The final functionality required to fully implement the gf_lo data decomposition is 

the code that will specify how to convert between g_lo and gf_lo and vice versa.  

This is implemented in a new routine in the le_grids module, 

init_g2gf_redistribute. 
 

With all these features implemented it is possible to convert between g_lo and 

gf_lo using the code: 
 
    call gather(g2gf, g, gf) 

 
and do the reverse conversion using: 
 
     call scatter(g2gf, gf, g) 

 
where g2gf is the layout data structure that specifies how data can be converted 

between the two data decompositions, and gf and g are data arrays that are structured 
to sort the data in the required format (i.e. either 3-D or 6-D). 
 5.1.2 local integration 
The gather routine that converts data from g_lo to gf_lo can then be utilised to 
convert the integrate functionality from: 
 
do iglo = g_lo%llim_proc, g_lo%ulim_proc 
  do isgn = 1, 2 
    g0(:,isgn,iglo) = aj0(:,iglo)*gnew(:,isgn,iglo) 
  end do 
end do 
 
do iglo = g_lo%llim_proc, g_lo%ulim_proc 
   ik = ik_idx(g_lo,iglo) 
   it = it_idx(g_lo,iglo) 
   ie = ie_idx(g_lo,iglo) 
   is = is_idx(g_lo,iglo) 
   il = il_idx(g_lo,iglo) 
           
   total(:, it, ik) = total(:, it, ik) + 
weights(is)*w(ie)*wl(:,il)*(g(:,1,iglo)+g(:,2,iglo)) 
end do 
 
call sum_allreduce_sub(total,g_lo%xyblock_comm) 

 
To: 
 
do iglo = g_lo%llim_proc, g_lo%ulim_proc 
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  do isgn = 1, 2 
    g0(:,isgn,iglo) = aj0(:,iglo)*gnew(:,isgn,iglo) 
  end do 
end do 
 
call gather(g2gf, g, gf) 
 
do igf = gf_lo%llim_proc,gf_lo%ulim_proc 
   it = it_idx(gf_lo,igf) 
   ik = ik_idx(gf_lo,igf) 
   do il = 1,gf_lo%nlambda 
      do ie = 1,gf_lo%negrid 
         do is = 1,gf_lo%nspec 
          total(:,it,ik) = total(:,it,ik) + 
weights(is)*w(ie)*wl(:,il)*(gf(:,1,is,ie,il,igf)+gf(:,2,i
s,ie,il,igf)) 
          end do 
      end do 
   end do 
end do 
 

However, this is only a partial solution, as after this integration the data is complete 
on the process that owns it in gf_lo, but not necessarily on all the processes that 
need it for the matrix-vector calculation to complete the field update (the processes 
that are part of the supercell that the gf_lo point belongs to).  Therefore, we needed 
to create some communication code to redistribute the final result of the velocity 
space integration to the process that needed it. 
 5.1.3 Redistributing the velocity space integral 
As discussed in section 3, the decomposition of the matrix-vector calculation for a 
given supercell is done in the fields code, there is a fields data decomposition 
constructed and used for all the fields calculation.  Therefore, if we are required to 
send data from the processes that owns it in gf_lo to the processes that need it in the 

fields supercell decomposition, we need to be able to map between gf_lo and the 
fields data decomposition. 
 

This functionality was implemented in a new routine in the fields_local 

module, reduce_an.   reduce_an uses information from the fields supercell 
decomposition, including information on which process is the supercell head, to work 

out where gf_lo data should be sent to and then how that is redistributed. 
 
The fields decomposition allocates each supercell a master process called the 
supercell head that can be responsible for co-ordinating communication between 
processes that require data in the supercell.  We utilise supercell heads to be the 
receiving processes for those processes in gf_lo sending data appropriate for that 
supercell.   
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Field supercells consist of a single, unique point in ! with one or more associated 

(linked) points in ", which means any given gf_lo data point will only map to one 
supercell.  Therefore, we can easily identify the process to receive the velocity space 

integration result from the process that calculated in it gf_lo (if the sending process 
and the receiving process are the same then the data is simply copied rather than being 
sent by MPI). 
 
Each field component of the velocity space integration is sent separately to the 
supercell head (this could be combined into a single message but that would require 
copying the data into a temporary buffer), and sent using non-blocking MPI point-to-
point communications. 
 
Once the supercell head has received the relevant data it then broadcasts that data to 
all the other processes in its supercell, using a sub-communicator that contains all the 
processes that own that data point. 
 
As this new velocity space integration functionality is design to improve the 
performance of GS2 at large process counts, we only expect this method of 
performance velocity space integrations to be efficient when we are using more 
processes than we have " and ! points (i.e. when " and ! are likely to be split in the # 
data decomposition).   Below this threshold we would expect the existing velocity 
space integration to be more efficient as it would require too much data movement to 
redistributed g_lo to gf_lo in this scenario and the integrations are not the 
dominant part of the code. 
 
To enable the gf_lo velocity space integration a new input parameter has been 

defined in the dist_fn name list: gf_lo_integrate.  By default this is false, 

but if it set to true then the gf_lo integrate is utilised. 
 5.1.4 Performance 
Evaluating the performance of this new, local, velocity space integration method we 
ran a number of tests using the !"$%& data layout, and measured the time to perform 
the original velocity space integration and the time required to complete the new local 
integration.  The times presented in the table below are the maximum time measured 
across all processes for those operations: 
 
Number of 
processes 

Original integrate 
(minutes) 

Local integrate 
(minutes) 

Integrate 
redistribution 
(minutes) 

4096 1.39 0.96 4.11 
8192 1.23 0.73 3.11 

 
The original integrate column above is simply the time to complete the original 
integration code (including the associated allreduce).  The local integrate column 

contains the time to do the redistribution from g_lo to gf_lo and perform the 
velocity space calculation. The integrate redistribution column has the time required 
to redistribute the calculated velocity space integral back to the processes in the 
supercell that require the data for the matrix-vector calculation. 



 24

 
We can see from the data in the table above that our approach to the velocity space 
integration does reduce the cost of that calculation.  Redistributing the data from 

g_lo to gf_lo and then performing the calculation locally is cheaper than 
performing the distributed calculation.  However, the cost of then sending the 
calculated result to the processes that require it far outweighs the benefits we have 
gained in performing the calculations locally. 
 
Primarily, this is because we are performing the velocity space calculation in a data 
distribution that does not match the data distribution being used for the fields 
calculation (i.e. the matrix-vector functionality).   
 
Therefore, for us to be able to benefit from the local integration code we need to 

implement a new fields decomposition that matches our gf_lo data decomposition, 
thereby removing the need to before the redistribution after the integration, and 
maintaining our performance benefits from the local integration. 
 5.2 Localised field calculation 
Given the gf_lo functionality, already described in the previous section, we 
designed a new data decomposition for the fields calculation, in a new fields module 
called fields_gf_local.  This new module follows the same structure as the 

existing fields_local module, but significantly alters the data decomposition, 
and therefore the matrix-vector calculation. 
 5.2.1 gf_lo field decomposition 
As previously discussed, the supercell data decomposition for the fields calculation is 
calculated as follows (for each supercell): 

1. Calculates a balanced blocksize for all the processes in the supercell. 
2. Implements an actual blocksize which is Max(balanced blocksize, 

user_defined_value), which can introduce a load imbalance to reduce 
communication costs. 

3. Records allocated work, and assigns blocks of work to available processes, 
starting with those processes with the least amount of work already assigned. 

 
Membership of the supercell is decided by whether a process owns any of the 
supercell in !, i.e. are any of the " and # points it has in the ! decomposition part of 
this supercell (remembering that a supercell is a single # point with one or more 
associated " points). 
 
If we consider membership of a supercell with reference to gf_lo instead of 

g_lo, we can follow the same procedure, but as a single " and # point in gf_lo is 
only every owned by one process we no longer need to worry about distributing work 
between processes, our membership of the supercell is simply the processes that own 

the " and # points in that supercell and also in gf_lo.   
 
As each process in the supercell will own the whole data for one (or more) " and # 
point(s) we need not worry about splitting blocks or block sizes, each process should 
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have the same amount of data/work in the supercell (assuming we are using more 
processes than we have ! and " points and therefore every process in the supercell 
will only have a single point). 
 
Therefore, the decomposition for our new fields module is calculated simply as 
follows: 

1. Iterate through all supercells 
2. For each supercell iterate through each cell (a cell is a single ! and " point) 
3. If I am the process that owns that cell in gf_lo then I have the work to do in 

the fields calculation for that cell  
4. Otherwise I ignore that cell 

   5.2.2 Communication routines 
Whilst the new fields module will undertake all its calculations in the gf_lo data 
layout, the rest of the GS2 code (i.e. the core linear calculations) still expect the result 

to be in the g_lo data layout.  Furthermore, the initialisation of the fields response 
matrix (i.e. the setup of the initial fields) uses both the fields calculation code, and the 
linear simulation code, to obtain the final result. 
 
This means that, unless we change the whole code to use our gf_lo data layout, 
which would limit the ultimate scalability of our simulations to using at most ! ∗ " 
processes and therefore is not desirable, we need to able to convert the final and initial 
field data from gf_lo to g_lo and vice versa. 
 
To perform this task we created two new communication routines, fm_scatter and 

fm_gather, which send the data between gf_lo and g_lo data layouts.  Whilst 
this is a communication overhead, the scatter is only performed once per simulation 
(after initialisation) and gather is only performed once per iteration of the solver, 
rather than many times per field or per supercell, so it should not significantly impact 
the performance. 
 
To perform the scatter operation each process simply loops through the field data it 
has, packs all the fields it has into a single temporary array (so if we are calculating 
with more than one field we are still only sending a single message for this 

communication) and sends that data to the owning process in gf_lo.   The g_lo 

field data is iterated through in a loop over ! and " points, so each gf_lo point is 
send individually to the owning process.  
 
Whilst we are undertaking this scatter process we also send all the field data to 
process 0 (the process MPI rank 0) as currently the full field data is required on this 
process for diagnostic calculations. 
 
The gather is the reverse operation, although we have integrated the communication 
functionality required to ensure all processes in a supercell has the field data for that 
supercell into the gather as well as the functionality to distribute the field data back to 
the processes that require it in g_lo. 
 



 26

To understand the gather operation we need to understand that the matrix-vector 
calculation we undertake in the fields functionality first does a local matrix-vector on 
each process in the supercell.  Once that has been calculated the global matrix-vector 
for the supercell is calculated by reducing the local matrix-vector results to the 
supercell head.  At the end of that process the supercell head has the correct data for 
the matrix-vector calculation in the supercell. 
 
Gather then takes the result on the supercell head and both sends it back to all 
processes in the supercell (so they have the correct final result) and sends it to process 
0 for diagnostic usage. 
 
Once that process has been completed then the process that owns the field data point 

in gf_lo then sends the data back to the processes that own the same point in g_lo.  

At the end of this process all the processes that own a given ! and " point in gf_lo 

and g_lo have the field data for that point.  This means we can update the fields in 

gf_lo and g_lo and continue with the linear calculations (and any other 
operations required by the simulation, i.e. non-linear and collisions). 
 
This does mean that with this new fields functionality we store the field data in two 
different forms, gf_lo and g_lo, requiring twice as much data storage for the fields 
data (although fields data is not large compared to the # data array).   
 
However, whilst this is inefficient in terms of storage, it does mean that we do not 
need scatter the fields from g_lo to gf_lo every timestep, we simple do it once 
after initialisation, then we update both sets of fields (which is a simple operation) 
each time we calculate the fields, and simply have to covert (gather) from gf_lo to 

g_lo each time step, not both ways. 
 5.2.3 Input parameters 
To utilise the new fields module a number of input flags need to be set: 

• fields_knobs: field_option='gf_local' 

• dist_fn_knobs: gf_lo_integrate= .true. 

• layout_knobs: gf_local_fields = .true. 
 
It could that these can be rationalise to a single input variable with a small amount of 
code refactoring. 5.2.4 Performance 
As has already been discussed, this functionality (fields_gf_local) is designed to be 
used when we are using large process counts for a given simulation, i.e. when we 
have significantly more processes than ! and " points in the simulation.  For the 
simulation we have been using for benchmarking there are 2016 ! and " points.  
Therefore, we evaluated the performance of the new fields at 4032/4096 processes 
and higher. 
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The table below outlines the performance of the original code and the new fields code 
for different layouts and process counts, timings are in minutes.  We have colour 
coded the timings for the new functionality, red where it is slower than the original 
code, and green where it is fast.  This data was collected using the simple fields 
decomposition, the scatter fields decomposition was also benchmarked but did not 
give as good a performance as the simple decomposition): 
Number of 
processes 

Layout Number 
of fields 

Original 
initialise 

gf_lo 
initialise 

Original 
advance 

gf_lo 
advance 

 
4032 

 
!"#$% 

1 0.2 0.28 0.31 0.3 
2 1.15 0.78 0.45 0.35 
3 3.71 2.08 0.63 0.43 

 
4096 

 
$#!"% 

1 0.37 0.32 0.42 0.49 
2 3.1 0.95 0.79 0.54 
3 9.63 2.23 0.99 0.61 

 
4096 

 
#$!"% 

1 0.17 0.33 0.4 0.54 
2 0.92 1.53 0.94 0.54 
3 2.79 4.01 1.19 0.64 

 
8064 

 
!"#$% 

1 0.21 0.37 0.56 0.3 
2 1.15 1.36 0.7 0.37 
3 3.62 3.85 0.86 0.46 

 
8192 

 
$#!"% 

1 0.45 0.36 0.49 0.44 
2 1.91 0.69 0.73 0.5 
3 9.3 1.56 1.03 0.58 

 
8192 

 
#$!"% 

1 0.14 0.42 0.40 0.40 
2 0.69 1.45 0.57 0.49 
3 1.98 3.97 0.75 0.58 

 
0.21 0.56 1.15 0.7 3.62 0.86 

 
 
The total improvement column records the improvement in the initialise + advance 
time (i.e. the time to complete the whole simulation).  Note, for these benchmark we 
were only running for 1000 steps, which is much shorter than normal simulation, and 
will mean the initialisation time has a bigger impact, proportionally, that it normally 
would.  Finally, the Total(1,000,000 steps) column estimates the impact on a normal, 
long running, simulation by multiplying the measured advanced time for 1000 steps 
by 1000 to give an estimate of the advanced runtime for 1,000,000 steps.: 
Number 
of 
processes 

Layout Number 
of fields 

Initialise  Advance  Total Total 
(1,000,000 
steps) 

 
4032 

 
!"#$% 

1 0.71 1.03 0.87 1.03 
2 1.47 1.28 1.41 1.28 
3 1.78 1.46 1.72 1.46 

 
4096 

 
$#!"% 

1 1.15 0.86 0.97 0.85 
2 3.26 1.46 2.61 1.46 
3 4.31 1.62 3.71 1.63 

 
4096 

 
#$!"% 

1 0.51 0.74 0.65 0.74 
2 0.60 1.75 0.90 1.73 
3 0.69 1.86 0.85 1.85 
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8064 

 
!"#$% 

1 0.57 1.87 1.15 1.86 
2 0.84 1.89 1.07 1.89 
3 0.94 1.87 1.04 1.86 

 
8192 

 
$#!"% 

1 1.28 1.11 1.17 1.11 
2 2.77 1.46 2.22 1.46 
3 5.96 1.77 4.83 1.79 

 
8192 

 
#$!"% 

1 0.33 1.00 0.66 0.99 
2 0.47 1.16 0.65 1.16 
3 0.50 1.29 0.60 1.29 

 
We can see that for the short simulation, where initialisation can have a big impact, 
our new functionality can give a near 5x performance improvement for the whole 
simulation (8192 processes, 3 fields, $#!"%).   
 
However, the impact of reduced initialisation performance for the #$!"% simulations 
means that on short simulations the overall cost of the new functionality is higher than 
the original functionality, although at higher process counts the new field 
functionality can make the advance ~29% faster than the original code. 
 
When considering a longer simulation, we can see that the big performance 
improvements, or impacts, of the new functionality on the initialisation code have a 
much smaller impact, and the performance improvement due to the new fields 
functionality is much closer to the performance improvement of the advance 
simulation functionality. 
 
However, that is not to say that the performance improvements in the initialisation 
should be ignored as for non-linear simulation it is sometime necessary occasionally 
need to reset the time step when simulation accuracy calculations exceed a certain 
limit and this requires recalculating the response matrix (i.e. a full initialisation).  
Therefore, optimised initialisation means that this is a smaller performance penalty 
for needing to reset, and therefore means the simulations can be run using stricter 
accuracy tolerances. 
 WP2 Improving the distributed matrix-vector product through optimised work decomposition 
As previously discussed, the fields supercell decomposition is constructed using the 
following process: 

1. Calculates a balanced blocksize for all the processes in the supercell. 
2. Implements an actual blocksize which is max(balanced blocksize, 

user_defined_value), which can introduce a load imbalance to reduce 
communication costs. 

3. Records allocated work, and assigns blocks of work to available processes, 
starting with those processes with the least amount of work already assigned. 

 
However, the blocksize is fixed for all supercells in the simulation, either as a pre-
defined value in the code, or as an input parameter.   
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We know that supercells vary in size, with some supercells containing a single (", $) 
point, and others being multiple " points associated to a single $ point.  This means 
that using a single, fixed, blocksize to determine how to choose which processes 
participate in the matrix-vector calculation associated with a given supercell may not 
be optimal. 
 

We implemented an auto-tuning framework in the original fields_local module 
(our new fields module has a fixed decomposition for all points in the fields so there 
is no scope for tuning the decomposition in this way). 
 
The auto-tuning framework alters the blocksize for the decomposition, constructs the 
data decomposition, and times a set of matrix-vector operations to evaluate the 
performance of that particular blocksize.  It then resets the decomposition, chooses a 
new blocksize and does the whole process again. 
 
To enable this functionality we had to alter the decomposition code in the fields 
module to make sure that the decomposition could be reset without causing problems 
or losing data.  Once this adaption was made the auto-tuning code was straight 
forward to implement: 
 
current_best_size = rowsize 
do ik = 1,fieldmat%naky 
  current_best = -1 
  rowsize = 2 
  MinNRow = rowsize 
  do i = 1,max_tuning_size 
    MinNRow(ik)=rowsize 
    call init_fields_matrixlocal(tuning_in=.true.) 
 
    start_time = timer_local() 
    call getfield_local(phinew,aparnew,bparnew, 
do_gather,do_update) 
    end_time = timer_local() 
 
    call finish_fields_local() 
 
    temp_best = end_time - start_time 
    max_best = temp_best 
    call max_reduce(max_best, 0) 
    min_best = temp_best 
    call min_reduce(min_best, 0) 
    av_best = temp_best 
    call sum_reduce(av_best, 0) 
 
    if(iproc .eq. 0) then 
      av_best = av_best/nproc 
      if(current_best .lt. 0) then 
        current_best = max_best 
        current_best_size(ik) = rowsize 
      else 
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        if(max_best .lt. current_best) then 
          current_best = max_best 
          current_best_size(ik) = rowsize 
        end if 
      end if 
    end if 
    rowsize = rowsize*2 
  end do 
end do 
 
call broadcast(current_best_size) 
MinNRow = current_best_size 
 

The auto-tuning is performed in the initialisation step, prior to the calculation of the 
field response matrix, which means the optimal blocksize will be used for that, 
expensive, calculation. 
 
To enable the user to choose whether to use auto-tuning, and new input parameter has 

been added to the fields_knobs name list: field_local_tuneminnrow.  By 

default this is false, but if field_local_tuneminnrow = .true. in the input 
file the auto-tuning functionality will be used. 5.3 Performance 
We evaluated the performance of the auto-tuning using the standard linear benchmark 
we have used previous.  Figures 9 and 10 should the initialisation time for !"#$% and 
"!#$% (#$!"% was benchmarked but showed no performance improvement).  The 
original lines show the performance of the original code, prior to any of the work we 
have done in this project.  The other lines are timings from the simulation using the 
auto-tuning functionality. 
 

 
Figure 9: Initialisation performance for YXLES using auto-tuning 
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Figure 10: Initialisation performance for YXLES using auto-tuning 

 
It is evident that the blocksize tuning can benefit the initialisation for these two 
layouts, with significant improvements for higher numbers of fields and lower core 
counts.  In this scenario the blocksize tunes itself to have large blocks, thereby 
reducing the number of processes involved in the supercell calculation, and 
performing a similar optimisation to the new fields functionality we have created (i.e. 
restricting the number of processes involved in the matrix-vector calculations).   
 
The best performance improvement is ~2.25x faster for !"#$% initialisation at low 
core counts, and ~73% faster for "!#$%.  These improvements are in spite of the fact 
that auto-tuning the blocksize has associated costs (undertaking a number of matrix-
vector calculations). 
 
Figures 11 and 12 demonstrate the performance of the advanced time from the same 
simulation: 
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Figure 11: Advance performance for XYLES using auto-tuning 

 

 
Figure 12: Advance performance for YXLES using auto-tuning 

 
The advanced time shows performance improvements from auto-tuning as well, 
particularly at high field numbers and lower core counts.  The best performance 
improvement for the advance time is ~15% faster for !"#$% and ~8% for "!#$%. 
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5.4 Further functionality 
We also implemented a more refined auto-tuning framework with the ability to select 
a different blocksize for each supercell in a simulation, rather than choosing a single 
blocksize for the whole simulation. 
 
In theory this could be more efficient as supercells can have different sizes so it is 
possible that different blocksizes will be optimal for different supercells. 
 
However, it does significantly increase the search space for the auto-tuning, as instead 
of searching through 10 or 15 different blocksizes it is necessary to seach through 10 
or 15 times the number of supercells in the simulation, so can increase the auto-tuning 
cost by 30-50 times for an average simulation. 
 
This cost significantly increases the initialisation time (for example, from 2 minutes to 
25 minutes), and the advance time does not improve significantly compared to the 
simple blocksize tuning approach, so this functionality has been removed from GS2. 
 6 WP3 Improving communications involved in matrix-vector product through non-blocking collectives 
The original fields code uses a range of collective communication, and new versions 
of the MPI standard defines a number of non-blocking collective operations. 
 
As the field matrix-vector calculations have a range of supercells to work on, and 
each supercell has calculations and communications associated with it, there is 
potential for overlapping the computation of the local matrix-vector products with the 
communication of that calculated data to supercell members.  Specifically, sending 
supercell data for one supercell whilst calculating the local matrix-vector product for 
the following supercell. 
 
To utilise the non-blocking collective communication, new versions of the MPI 
wrapper routines used in GS2 were written, which provided the range of non-blocking 
collectives required in the fields simulations.  They were written in such as way as to 
default to the standard collective communication routines if GS2 is being used on a 
machine with an MPI library without MPI-3.0 functionality. 
 
A new input parameter, field_local_nonblocking_collectives, has 
been added to the fields namelist to enable turning the non-blocking collectives on 
and off (by default it is not enabled). 
 
The non-blocking collectives have been implemented in the original fields code, 
however they provided little performance improvement (around ~1% in the total run 
time).  Following profiling it is apparent that current there is not enough work to 
overall the communication with in the current code.  However, there are other areas of 
the code where non-blocking communications may be of use, and the non-blocking 
functionality is now available for use in GS2. 
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 7 Conclusions 
We have implemented a new fields module that uses a new data layout that optimises 
both the fields update and velocity space integration at large process counts by 
sacrificing an even data distribution between processes for a reduced amount of 
communication required to calculate the field update. 
 
This new field solve can provide up to ~5 times performance improvements for short 
simulations, and approaching 2 times performance improvement for longer running 
simulations with a range of process counts.   
 
The optimisation generally improves both the initialisation and advance stages of the 
simulation, and it enables data layouts that were too costly previously (in terms of 
initialisation) to be used for production simulations. 
 
We have also investigated auto-tuning of the matrix-vector operation the fields update 
with the previous fields data decomposition, and found that it can improve 
performance (~8-~15% faster for the advance and ~.7-~2.25 times faster for the 
initialisation) for some data layouts and types of simulation.  This can be used to 
improve the performance of GS2 at lower process counts (where the new fields 
functionality is not designed to work). 
 
Finally, we also investigated non-blocking collective communications but found them 
not to give significant performance improvements, and to be unnecessary in the new 
fields functionality we have created. 
 
This work was funded under the embedded CSE programme of the ARCHER UK 
National Supercomputing Service (http://www.archer.ac.uk). 8 Future Work 
There are a number of areas where further optimisation or functionality is could be 
added to GS2. 
 

The first area would be to add redistribution functionality to able data in gf_lo 
layout to be redistributed to collision layouts.  Collisions are currently very expensive 
in GS2 simulations, and involve large amounts of communication.  However, 

collisions can use a data layout, le_lo, which has similarities to gf_lo.   
 
As previously mentioned, the current code performs calculations in the following 
order: NLCFLC (where F is field calculations and C is collision calculations).  Given 

this sequence, if we could map from collision layout (le_lo) directly to our new 

field layout (gf_lo) this could significantly reduce the communications associated 
with collisions in GS2. 
 
Furthermore, if such a redistribute was implemented, it could be possible to re-order 
the calculations in GS2, from NLCFLC to NLCFCL (i.e. keep data in similar layouts 
as much as possible).  This would require some careful consideration to ensure it does 
not adversely affect the numerical accuracy and stability of the simulation (as we are 
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changing for order of the operator splitting scheme being used) but if it is deemed 
possible without significantly affecting the scientific integrity of the simulations it 
could have big benefits (i.e. collisional simulations could have very similar 
computational costs to non-linear simulations). 
 
The diagnostic code in GS2 currently takes all the data needed for diagnostics and 
sends it to process 0, which performs the diagnostic calculations and outputs the 
result.  If this could be done in a distributed fashion, rather than by a single process 
this could have significant communication savings. 
 
The decompositions implemented in the new fields functionality is not currently 
optimal, and could be further improved by taking into account the current distribution 

in g_lo prior to the redistribute.   It should also be extended to group ! points with a 
single " when used with less processes than !, " points.  This could, potentially, 
enable the new fields code to be efficient even with low process counts. 
 
Finally, the code we use to gather and scatter fields data in the new fields routines 
does not take into account the fact that currently process 0 requires all the data.  The 
communications could be adapted to take this into account.  
 9 Appendix A 
GS2 input file used for this project 
 
&theta_grid_knobs 
 equilibrium_option='eik' 
/ 
 
&theta_grid_parameters 
 rhoc = 0.4 
 ntheta = 30 
 nperiod= 1 
/ 
 
&parameters 
 beta = 0.04948 
 zeff =   1.0 
 TiTe = 1.0 
/ 
 
&collisions_knobs 
 collision_model = 'none' 
/ 
 
&theta_grid_eik_knobs 
 itor = 1 
 iflux = 1 
 irho = 3 
 ppl_eq = .false. 
 gen_eq =  .false. 
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 efit_eq = .true. 
 gs2d_eq = .true. 
 local_eq = .false. 
 eqfile = 'equilibrium.dat' 
 equal_arc = .false. 
 bishop = 1 
 s_hat_input = 0.29 
  beta_prime_input = -0.5 
 delrho = 1.e-3 
 isym = 0 
 writelots = .false. 
/ 
 
&fields_knobs 
 field_option='local' 
 field_subgath = .false. 
/ 
 
&gs2_diagnostics_knobs 
 write_ascii = .false. 
 print_flux_line = .true. 
 write_flux_line = .false. 
 write_nl_flux = .false. 
 write_omega = .false. 
 write_omavg = .false. 
 write_final_moments = .false. 
 write_final_fields=.false. 
 print_line=.false. 
 write_line=.false. 
 
 save_for_restart=.false. 
 nsave=         1000 
 
 nwrite=        2000 
 navg=          200 
 
 omegatol=  1.0e-5 
 omegatinst = 500.0 
/ 
 
&le_grids_knobs 
 ngauss = 8 
 negrid = 8 
/ 
 
&dist_fn_knobs 
 boundary_option= "linked" 
 gridfac=   1.0 
 gf_lo_integrate= .false. 
/ 
 



 37

&init_g_knobs 
 !restart_file= "nc/input.nc" 
 ginit_option= "noise" 
 phiinit=   1.e-6 
 chop_side = .false. 
/ 
 
&kt_grids_knobs 
 grid_option='box' 
/ 
 
&kt_grids_box_parameters 
 y0 = 10 
 ny = 96     
 nx = 96     
 jtwist = 2   
/ 
 
&knobs 
 fphi= 1.0 
 fapar= 1.0 
 fbpar= 1.0 
 faperp= 0.0 
 delt= 1.0e-4 
 nstep= 1000 
 wstar_units = .false. 
/ 
 
&species_knobs 
 nspec=  2 
/ 
 
&species_parameters_1 
 type  = 'ion' 
 z     = 1.0 
 mass  = 1.0 
 dens  = 1.0 
 temp  = 1.0 
 tprim = 2.04 
 fprim = 0.0 
 vnewk = 1.0 
 uprim = 0.0 
/ 
 
&dist_fn_species_knobs_1 
 fexpr  = 0.45 
 bakdif = 0.05 
/ 
 
&species_parameters_2 
 type  = 'electron' 
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 z     = -1.0 
 mass  = 0.01 
 dens  = 1.0 
 temp  = 1.0 
 tprim = 2.04 
 fprim = 0.0 
 vnewk = 1.0 
 uprim = 0.0 
/ 
 
&dist_fn_species_knobs_2 
 fexpr= 0.45 
 bakdif=  0.05 
/ 
 
&theta_grid_file_knobs 
 gridout_file='grid.out' 
/ 
 
&theta_grid_gridgen_knobs 
 npadd = 0 
 alknob = 0.0 
 epsknob = 1.e-5 
 extrknob = 0.0 
 tension = 1.0 
 thetamax = 0.0 
 deltaw = 0.0 
 widthw = 1.0 
/ 
 
&source_knobs 
/ 
 
&nonlinear_terms_knobs 
nonlinear_mode='off' 
cfl = 0.5 
/ 
 
&additional_linear_terms_knobs 
/ 
 
&reinit_knobs 
 delt_adj = 2.0 
 delt_minimum = 1.e-8 
/ 
 
&theta_grid_salpha_knobs 
/ 
&hyper_knobs 
/ 
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&layouts_knobs 
 layout = 'xyles' 
 local_field_solve = .true. 
 unbalanced_xxf = .true. 
 max_unbalanced_xxf = 0.5 
 unbalanced_yxf = .true. 
 max_unbalanced_yxf = 0.5 
 opt_local_copy = .true. 
 opt_redist_init = .true. 
 opt_redist_nbk = .true. 
 intmom_sub = .true. 
 intspec_sub = .true. 
/ 
 
 10 Appendix B 
Linear profiling result for !"#$%: 
 

1 field, 448 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 10,103.4 |      -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  65.0% |  6,563.3 |      -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  37.1% |  3,748.8 | 1,065.2 | 22.2% |mpi_bcast 
||  17.8% |  1,793.9 |   287.1 | 13.8% |MPI_ALLGATHERV 
||   6.8% |    686.4 | 1,281.6 | 65.3% |MPI_REDUCE 
||   2.2% |    221.5 |   724.5 | 76.8% |MPI_ALLREDUCE 
||============================================================================ 
|  25.6% |  2,588.0 |      -- |    -- |USER 
||---------------------------------------------------------------------------- 
||   6.2% |    631.0 |   277.0 | 30.6% |dist_fn_mp_invert_rhs_1_ 
||   4.7% |    470.4 |   199.6 | 29.9% |dist_fn_mp_get_source_term_ 
||   4.3% |    438.9 |   191.1 | 30.4% |dist_fnget_source_term_mp_set_source_ 
||   2.3% |    227.6 |   280.4 | 55.3% |dist_fn_mp_invert_rhs_linked_ 
||   1.6% |    159.5 |    53.5 | 25.2% |dist_fn_mp_getan_nogath_ 
||   1.1% |    109.6 |   590.4 | 84.5% |redistribute_mp_c_redist_33_mpi_copy_nonblock_ 
||============================================================================ 
|   9.2% |    933.5 |      -- |    -- |ETC 
||---------------------------------------------------------------------------- 
||   6.4% |    646.0 |   133.0 | 17.1% |__intel_memset 
||   2.2% |    226.6 |   107.4 | 32.2% |__intel_ssse3_rep_memcpy 
|============================================================================= 
 

1 field, 4032 processes 
  Samp% |    Samp |    Imb. |  Imb. |Group 
        |         |    Samp | Samp% | Function 
        |         |         |       |  PE=HIDE 
        
 100.0% | 7,151.3 |      -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  86.2% | 6,164.0 |      -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  59.4% | 4,248.4 |   789.6 | 15.7% |mpi_bcast 
||  13.1% |   933.9 |   125.1 | 11.8% |MPI_ALLGATHERV 
||   9.3% |   662.0 | 1,162.0 | 63.7% |MPI_REDUCE 
||   2.8% |   203.6 |    88.4 | 30.3% |MPI_ALLREDUCE 
||============================================================================ 
|  10.1% |   724.6 |      -- |    -- |USER 
||---------------------------------------------------------------------------- 
||   2.8% |   200.4 |   102.6 | 33.9% |redistribute_mp_c_redist_33_mpi_copy_nonblock_ 
||   1.0% |    74.1 |     9.9 | 11.8% |le_grids_mp_legendre_transform_ 



 40

||   1.0% |    72.8 |    61.2 | 45.7% |dist_fn_mp_invert_rhs_1_ 
||============================================================================ 
|   3.4% |   246.0 |      -- |    -- |ETC 
||---------------------------------------------------------------------------- 
||   1.9% |   133.8 |    59.2 | 30.7% |__intel_memset 
|============================================================================= 
 

2 field, 448 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 20,730.1 |      -- |    -- |Total 
|-------------------------------------------------------------------------- 
|  77.0% | 15,960.7 |      -- |    -- |MPI 
||------------------------------------------------------------------------- 
||  45.7% |  9,469.0 |   932.0 |  9.0% |MPI_ALLGATHERV 
||  23.5% |  4,881.8 | 1,308.2 | 21.2% |mpi_bcast 
||   4.3% |    886.8 | 1,497.2 | 62.9% |MPI_REDUCE 
||   2.6% |    544.8 | 3,480.2 | 86.7% |MPI_ALLREDUCE 
||========================================================================= 
|  17.0% |  3,518.6 |      -- |    -- |USER 
||------------------------------------------------------------------------- 
||   3.2% |    669.1 |   594.9 | 47.2% |dist_fn_mp_invert_rhs_1_ 
||   2.4% |    494.8 |   464.2 | 48.5% |dist_fn_mp_get_source_term_ 
||   2.2% |    463.7 |   383.3 | 45.4% |dist_fnget_source_term_mp_set_source_ 
||   1.7% |    349.3 |   224.7 | 39.2% |dist_fn_mp_getan_nogath_ 
||   1.4% |    290.0 |   452.0 | 61.0% |dist_fn_mp_invert_rhs_linked_ 
||   1.4% |    284.0 | 6,721.0 | 96.2% |mat_inv_mp_inverse_gj_ 
||========================================================================= 
|   5.9% |  1,231.0 |      -- |    -- |ETC 
||------------------------------------------------------------------------- 
||   4.1% |    839.6 |   164.4 | 16.4% |__intel_memset 
||   1.5% |    320.1 |   189.9 | 37.3% |__intel_ssse3_rep_memcpy 
|========================================================================== 
 

2 field, 4032 processes 
  Samp% |     Samp |    Imb. |  Imb. |Group 
        |          |    Samp | Samp% | Function 
        |          |         |       |  PE=HIDE 
        
 100.0% | 14,727.1 |      -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  89.4% | 13,171.3 |      -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  43.6% |  6,426.6 |   360.4 |  5.3% |MPI_ALLGATHERV 
||  35.5% |  5,229.2 |   900.8 | 14.7% |mpi_bcast 
||   5.8% |    852.7 | 1,528.3 | 64.2% |MPI_REDUCE 
||   3.3% |    486.1 |   174.9 | 26.5% |MPI_ALLREDUCE 
||============================================================================ 
|   7.9% |  1,169.2 |      -- |    -- |USER 
||---------------------------------------------------------------------------- 
||   1.8% |    264.2 |   113.8 | 30.1% |redistribute_mp_c_redist_33_mpi_copy_nonblock_ 
||   1.3% |    196.7 | 5,929.3 | 96.8% |mat_inv_mp_inverse_gj_ 
||   1.0% |    140.9 |    77.1 | 35.4% |fields_local_mp_advance_local_ 
||============================================================================ 
|   2.5% |    368.9 |      -- |    -- |ETC 
||---------------------------------------------------------------------------- 
||   1.2% |    174.4 |    94.6 | 35.2% |__intel_memset 
||   1.0% |    140.0 |   166.0 | 54.3% |__intel_ssse3_rep_memcpy 
|============================================================================= 
 

3 field, 448 processes 
  Samp% |     Samp |     Imb. |  Imb. |Group 
        |          |     Samp | Samp% | Function 
        |          |          |       |  PE=HIDE 
        
 100.0% | 43,289.6 |       -- |    -- |Total 
|--------------------------------------------------------------------------- 
|  84.9% | 36,754.2 |       -- |    -- |MPI 
||-------------------------------------------------------------------------- 
||  64.9% | 28,075.6 |  2,212.4 |  7.3% |MPI_ALLGATHERV 
||  14.7% |  6,383.0 |  1,660.0 | 20.7% |mpi_bcast 
||   2.7% |  1,176.1 |  2,102.9 | 64.3% |MPI_REDUCE 
||   2.0% |    858.7 | 10,658.3 | 92.8% |MPI_ALLREDUCE 
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||========================================================================== 
|  11.6% |  5,016.3 |       -- |    -- |USER 
||-------------------------------------------------------------------------- 
||   2.5% |  1,072.8 | 23,108.2 | 95.8% |mat_inv_mp_inverse_gj_ 
||   1.6% |    712.8 |    985.2 | 58.2% |dist_fn_mp_invert_rhs_1_ 
||   1.3% |    544.4 |    767.6 | 58.6% |dist_fn_mp_getan_nogath_ 
||   1.2% |    526.6 |    671.4 | 56.2% |dist_fn_mp_get_source_term_ 
||   1.1% |    490.2 |    542.8 | 52.7% |dist_fnget_source_term_mp_set_source_ 
||========================================================================== 
|   3.5% |  1,498.5 |       -- |    -- |ETC 
||-------------------------------------------------------------------------- 
||   2.4% |  1,020.9 |    203.1 | 16.6% |__intel_memset 
|=========================================================================== 
 

3 field, 4032 processes 
  Samp% |     Samp |     Imb. |  Imb. |Group 
        |          |     Samp | Samp% | Function 
        |          |          |       |  PE=HIDE 
        
 100.0% | 31,630.8 |       -- |    -- |Total 
|----------------------------------------------------------------------------- 
|  92.4% | 29,242.0 |       -- |    -- |MPI 
||---------------------------------------------------------------------------- 
||  65.7% | 20,797.2 |    877.8 |  4.1% |MPI_ALLGATHERV 
||  21.3% |  6,740.0 |  1,249.0 | 15.6% |mpi_bcast 
||   3.1% |    989.7 |  1,943.3 | 66.3% |MPI_REDUCE 
||   1.8% |    559.6 |    356.4 | 38.9% |MPI_ALLREDUCE 
||============================================================================ 
|   5.9% |  1,876.7 |       -- |    -- |USER 
||---------------------------------------------------------------------------- 
||   2.2% |    680.7 | 19,973.3 | 96.7% |mat_inv_mp_inverse_gj_ 
||   1.0% |    313.3 |    141.7 | 31.1% 
|redistribute_mp_c_redist_33_mpi_copy_nonblock_ 
||============================================================================ 
|   1.6% |    494.2 |       -- |    -- |ETC 
|============================================================================= 

 


