
Technical Report 

 
Fast and Massively Distributed Electromagnetic Solver for 

Advanced HPC Studies of 3D Photonic Nanostructures 
 

Mayeul d’Avezac1 and Nicolae C. Panoiu2 
 

1Research Software Development, Research IT Services  
University College London, Malet Place, London WC1E 6BT, United Kingdom 

 

2Department of Electronic and Electrical Engineering,  
University College London, Torrington Place, London WC1E 7JE, United Kingdom 

 
 

Abstract 

Advanced research in optical materials has shown that rapid breakthroughs in device 
applications go hand-in-hand with the development of efficient, computationally powerful 
software tools. Thus, high fabrication costs of complex photonic nano-structures and devices 
make it imperative to have access to computational tools based on efficient algorithms, which can 
greatly reduce the design-fabrication-testing cycle. In this context, computational methods based 
on the multiple-scattering formalism have become a primary means to model a variety of 
scientific and engineering problems. As part of this project, we have transformed OPTIMET – a 
software based on the multiple-scattering matrix method for solving the problem of 
electromagnetic waves scattering from arbitrary distributions of particles – from a HPC code that 
runs efficiently on a University level HPC system to a state-of-the-art HPC software that can be 
deployed and used on national level HPC facilities such as ARCHER. In particular, the code has 
been developed along the following directions: i) implemented an auto-distribution mechanism 
for all the computational work required to construct and solve the system of linear equations for 
the expansion coefficients of the electromagnetic field, the main physical quantities computed 
with OPTIMET and ii) dramatically advanced the functionality of OPTIMET by implementing an 
efficient, parallelized iterative-scheme complemented by a state-of-the-art acceleration engine. A 
key outcome of this work was that by adding iterative solvers in conjunction with employing the 
rotation-coaxial translation decomposition for the matrix–vector multiplication involving the 
system matrix, the complexity of the problem has been greatly reduced, from 𝑂(𝑁3𝑛𝑚𝑎𝑥

6 ) to 
𝑂(𝑁2𝑛𝑚𝑎𝑥

3 𝑁𝑖𝑡𝑒𝑟), where 𝑁 is the number of particles, 𝑛𝑚𝑎𝑥  is the truncation order for the vector 
spherical wave functions, and 𝑁𝑖𝑡𝑒𝑟  is the number of iterations needed to reach convergence.  

 
  

1. Science background 

In order to facilitate the understanding of the main capabilities of OPTIMET 
(OPTIcal METa-materials), we briefly present in this section the numerical 
method on which the code is based. Thus, the main steps of the multiple-
scattering matrix (MSM) method can be described as follows: First, the incident, 
scattered, and internal (inside the scatterers) fields are expanded in Fourier 
series. The basis functions in 2D and 3D are multipole functions and vector 
spherical wave functions (VSWF), respectively [1,2,3,4]. Then, one constructs a 
system of linear equations whose unknowns are the Fourier coefficients of the 
scattered field. These coefficients are the main unknowns of the scattering 
problem as they can be used to compute most of the main physical quantities 
characterising the wave interaction, namely, the electromagnetic field 



distribution both inside and outside the scatterers, and the scattering, 
absorption and the extinction cross-sections. 

This brief description of the MSM method shows that the main part of this 
algorithm consists in constructing and solving a system of linear equations 
whose unknowns are the Fourier coefficients of the scattered field. The matrix 
defining this system, also called the transfer matrix (or T-matrix), is completely 
defined by the location, shape and material parameters of the particles. The T-
matrix of the system has a block structure, the blocks consisting of single-particle 
T-matrices and matrices that describe inter-particle interactions (coupling 
between particles). As a consequence of this block structure of the T-matrix, the 
MSM method can be easily applied to clusters with different number and 
distribution of particles. Equally important, the obvious scalability with the 
number of particles renders the MSM algorithm particularly suitable for 
parallelisation.  

Mathematical Formulation of the Multiple Scattering Matrix Method 

Consider a cluster of N particles being illuminated by a monochromatic plane 
electromagnetic wave. The origin of the co-ordinate system of the cluster is 𝑂 
and to each particle (j) one associates a co-ordinate system with the origin, 𝑂𝑗. 

The only constraint imposed on the location of the particles is that the 
circumscribing spheres of the particles do not overlap, i.e. |𝑹𝑗𝑙| = |𝑂𝑗 − 𝑂𝑙| ≥

𝜌𝑗 + 𝜌𝑙, 𝑗, 𝑙 = 1,2, … ,𝑁, 𝑗 ≠ 𝑙, where, as per Figure 1, 𝜌𝑗  is the radius of the 

smallest sphere containing the jth particle. 

The solution of the source-free Maxwell equations in 3D can be expanded in a 

complete basis of VSWFs, (𝑴𝑚𝑛
(1)

, 𝑵𝑚𝑛
(1)

)  and (𝑴𝑚𝑛
(3)

, 𝑵𝑚𝑛
(3)

) . In a practical 

implementation, the series is truncated to a certain order, 𝑛𝑚𝑎𝑥 . Let 
∑ ≝𝑚𝑛 ∑ ∑ ;𝑛

𝑚=−𝑛
𝑛𝑚𝑎𝑥
𝑛=1  then, the incident, scattered and internal electric fields can 

be expressed as: 

incident field 

 𝑬0
𝑖𝑛𝑐(𝑹) = ∑ [𝑎𝑚𝑛𝑴𝑚𝑛

(1) (𝑘𝑹) + 𝑏𝑚𝑛𝑵𝑚𝑛
(1) (𝑘𝑹)]𝑚𝑛 ,                                       (1) 

 
Figure 1. Schematic representation of the incident field/scattered field theoretical model and 3D structure of 
a cluster of arbitrary scatterers. 

 

 



internal field 

 𝑬𝑖𝑛𝑡(𝑹𝑗) = ∑ [𝑐𝑚𝑛
𝑗

𝐑𝐠𝑴𝑚𝑛
(1)

(𝑘𝑗𝑹𝑗) + 𝑑𝑚𝑛
𝑗

𝐑𝐠𝑵𝑚𝑛
(1)

(𝑘𝑗𝑹𝑗)]𝑚𝑛 ,   𝑅𝑗 < 𝜌𝑗 , (2) 

scattered field 

 𝑬𝑠𝑐𝑎(𝑹𝑗) = ∑ [𝑝𝑚𝑛
𝑗

𝑴𝑚𝑛
(3)

(𝑘𝑹𝑗) + 𝑞𝑚𝑛
𝑗

𝑵𝑚𝑛
(3)

(𝑘𝑹𝑗)]𝑚𝑛 ,   𝑅𝑗 > 𝜌𝑗 ,               (3) 

where 𝑘 and 𝑘𝑗  are the wave vectors in the embedding medium and inside the jth 

particle, respectively, 𝑹 and 𝑹𝑗 , 𝑗 = 1,2, … ,𝑁, are the position vectors of a point, 

P, in the co-ordinate systems 𝑂 and 𝑂𝑗, respectively. The magnetic field is 

subsequently obtained from the electric field as 𝑯 = 𝛁 × 𝑬. The unknown 

expansion coefficients of the internal and scattered fields, (𝑐𝑚𝑛
𝑗

, 𝑑𝑚𝑛
𝑗

)  and 

(𝑝𝑚𝑛
𝑗

, 𝑞𝑚𝑛
𝑗

), respectively, can be expressed in terms of the known expansion 

coefficients of the incident monochromatic plane wave, (𝑎𝑚𝑛
𝑗

, 𝑏𝑚𝑛
𝑗

), by imposing 

at the surface of the particles the boundary conditions satisfied by the electric 
and magnetic fields. 

a. Single Particle Analysis 

Let 𝐚𝑗 = [𝑎1
𝑗
, 𝑎2

𝑗
, … , 𝑎𝑢𝑚𝑎𝑥

𝑗
]
T

, with 𝑢𝑚𝑎𝑥 = 𝑛𝑚𝑎𝑥
2 + 2𝑛𝑚𝑎𝑥 , be a column vector, and 

define similarly 𝐛𝑗 , 𝐜𝑗 , 𝐝𝑗 , 𝐩𝑗  and 𝐪𝑗 . Here, (𝐚𝑗 , 𝐛𝑗) , (𝐜𝑗 , 𝐝𝑗)  and (𝐩𝑗 , 𝐪𝑗) 

represent the Fourier expansion coefficients of the incident, internal and 
scattered fields, respectively, defined with respect to 𝑂, relative to 𝑂𝑗 ,  𝑗 =

1,2, … ,𝑁. Moreover, if one assumes that the system contains only the  𝑗th 
particle, a compact matrix representation of the Fourier coefficients of the 
electromagnetic fields, both inside and outside the particle, can be cast as: 

[
𝐩𝑗

𝐪𝑗
] = 𝐓𝑗 [𝐚

𝑗

𝐛𝑗
] = [𝐓

11 𝟎
𝟎 𝐓22]

𝑗

[𝐚
𝑗

𝐛𝑗
],         [𝐜

𝑗

𝐝𝑗
] = 𝐐𝑗 [𝐚

𝑗

𝐛𝑗
] = [

𝐐11 𝟎

𝟎 𝐐22]
𝑗

[𝐚
𝑗

𝐛𝑗
].     (6) 

Here, 𝐓𝑗  and 𝐐𝑗 , 𝑗 = 1,2, … ,𝑁, are the scatterer-centred T-matrix of the jth 
particle and a matrix that relates the Fourier coefficients of the inside and 
outside fields, respectively. Note that the block-diagonal structure of the 𝐓𝑗  and 
𝐐𝑗  matrices is valid only for spherical particles. 

b. Multiple Particles System 

The central idea of the Foldy–Lax multiple scattering theory [5] is that in the 
vicinity of any scatterer 𝑗 in the 𝑁 particle system, there is a local field that is the 
superposition of the incident field and the field scattered by all the other 
scatterers in the system, except the scatterer itself. Using the definition of the 
single-particle T-matrix, 𝐓𝑗 , 𝑗 = 1,2, … ,𝑁, the Fourier expansion coefficients of 
the scattered and incident fields, (𝐩𝑗 , 𝐪𝑗) and (𝐚𝑗 , 𝐛𝑗), respectively, obey the 

following equation: 

[
𝐩𝑗

𝐪𝑗
] = 𝐓𝑗 {[𝐚

𝑗

𝐛𝑗
] + ∑[

𝐩𝑙𝑗

𝐪𝑙𝑗
]

𝑙≠𝑗

} , 𝑗 = 1,2, … ,𝑁.                                                           (7) 

The coefficients (𝐚𝑗 , 𝐛𝑗)  and (𝐩𝑙𝑗, 𝐪𝑙𝑗) , where 𝐩𝑙𝑗 = [𝑝1
𝑗𝑙
, 𝑝2

𝑙𝑗
, … , 𝑝𝑢𝑚𝑎𝑥

𝑙𝑗
]
T

, and 

similarly for 𝐪𝑙𝑗, need to be expressed in terms of the known expansion 

coefficients of the incoming field and (𝐩𝑗 , 𝐪𝑗), respectively, which are calculated 



in the system with the origin in 𝑂. This is achieved by using the vector 
translation-addition theorem [1,3]. Thus, let us consider the matrix coefficients, 

𝛼(𝑗,𝑙) = [
𝐴(3)(𝑘𝑹𝑗𝑙) 𝐵(3)(𝑘𝑹𝑗𝑙)

𝐵(3)(𝑘𝑹𝑗𝑙) 𝐴(3)(𝑘𝑹𝑗𝑙)
] , 𝑗, 𝑙 = 1,2, … ,𝑁,   𝑗 ≠ 𝑙,                               (8𝑎) 

𝛽(𝑗,0) = [
𝐴(1)(𝑘𝑹𝑗0) 𝐵(1)(𝑘𝑹𝑗0)

𝐵(1)(𝑘𝑹𝑗0) 𝐴(1)(𝑘𝑹𝑗0)
] , 𝑗 = 1,2, … ,𝑁,                                             (8𝑏)  

where 𝐴(𝑧)(𝑘𝑹) and 𝐵(𝑧)(𝑘𝑹), 𝑧 = 1,3, represent the vector translation-addition 
coefficients, which are evaluated using an efficient recursive implementation as 

proposed in [3]. Let 𝐟𝑗 = [𝐩𝑗  𝐪𝑗]
T

 and 𝐀 = [𝐚 𝐛]T . Then, the single-particle 

scattering expansion coefficients, 𝐟𝑗, can now be expressed in terms of 𝐀 and 𝐟𝑙, 
𝑗, 𝑙 = 1,2, … ,𝑁, 𝑗 ≠ 𝑙, as: 

𝐟𝑗 = 𝐓𝑗𝛽(𝑗,0) 𝐀 + 𝐓𝑗 ∑𝛼(𝑗,𝑙)𝐟𝑙

𝑙≠𝑗

.                                                                                          (9) 

In terms of the known Fourier expansion coefficients of the incident field, 𝐀, the 
resulting system of linear equations for the 𝑁 particle system for the unknown 
Fourier expansion coefficients of the scattered field, 𝐟𝑗, 𝑗 = 1,2, … ,𝑁, can be 
expressed in the following form: 

[
 
 
 
 

𝐈
−𝐓2𝛼(2,1)

−𝐓3𝛼(3,1)

⋮
−𝐓𝑁𝛼(𝑁,1)

   

−𝐓1𝛼(1,2)

𝐈
−𝐓3𝛼(3,2)

⋮
−𝐓𝑁𝛼(𝑁,2)

   

−𝐓1𝛼(1,3)

−𝐓2𝛼(2,3)

𝐈
⋮

−𝐓𝑁𝛼(𝑁,3)

   

⋯
⋯
⋯
⋱
⋯

   

−𝐓1𝛼(1,𝑁)

−𝐓2𝛼(2,𝑁)

−𝐓3𝛼(3,𝑁)

⋮
𝐈 ]

 
 
 
 

[
 
 
 
 
𝐟1

𝐟2

𝐟3

⋮
𝐟𝑁]

 
 
 
 

=

[
 
 
 
 
 
𝐓1𝛽(1,0)𝐀

𝐓2𝛽(2,0)𝐀

𝐓3𝛽(3,0)𝐀
⋮

𝐓𝑁𝛽(𝑁,0)𝐀]
 
 
 
 
 

.           (10)    

 The system (10) can be expressed in a compact matrix form, 𝐒𝐅 = 𝐔, where 𝐅 =

[𝐟1, 𝐟2, … , 𝐟𝑁]T , 𝐔 = [𝐓1β(1,0)𝐀, 𝐓2β(2,0)𝐀,… , 𝐓𝑁β(𝑁,0)𝐀]
T

 and 𝐒  denotes the 

scattering matrix of the system. Constructing the system matrix 𝐒 and solving Eq. 
(10) represent the core parts of the MSM method. 
 

2. Features developed during the eCSE 

2.1. Parallelization 

As explained in the preceding section, OPTIMET is nothing more than a code to 
invert a (very specific) matrix. As such, to complete work-package 1, we first 
turned to Scalapack, a standard Fortran/C library with parallel linear algebra 
capabilities, including solving for arbitrary linear systems of complex variables.  
With the refactoring work done (see Sec. 4.3), adding Scalapack as a solver and 
Matrix-Vector multiplication operation became a fairly straight-forward exercise 
in (i) adding a dependency to the build system when compiling OPTIMET with 
MPI and (ii) adding few C++ wrappers to simplify Scalapack’ and MPI’s C 
routines.  The performance improvements are given in a later section. 

The main difficulty arose when, for larger and more complex systems, creating 
the matrix became a prohibitive bottleneck (this actually became true only when 
the iterative solvers from Trilinos were integrated into OPTIMET). To parallelize 
this procedure, we rely on Scalapack’s ability to create and transform block-
cyclic matrices with blocks of different sizes. We also rely on the condition that 
all the scatterers are described by the same spherical harmonics basis. In this 



case, the matrix can be decomposed into a set of equal-sized blocks, each 
describing the interaction between two particles. By creating a distributed block-
cyclic matrix where the block size is a multiple of the size of an interaction-
matrix, we can easily ensure that each process creates only parts of the final 
matrix.  Then we request Scalapack to transform the block cyclic matrix to one 
where the blocks are sized for performance rather than convenience. 

2.2. Iterative Solvers 

Because of the underlying assumptions, mainly with regards to approximating 
scatterers with homogeneous spherical particles, the solution to the linear 
system solved by OPTIMET converges relatively fast, especially in the case of 
dielectric materials. Hence iterative solvers could well prove much more efficient 
than direct solvers. We chose to use the family of solvers which already exist in 
Trilinos, more specifically in the Belos subpackage. This gives us the ability to 
explore a variety of state-of-the-art iterative solvers, rather than spend time 
implementing our own. One of the interesting features of the Belos solvers is that 
they only require from users a vector in a Trilinos object and a function to 
perform matrix-vector multiplications. The format of the underlying matrix does 
not matter, indeed it does need exist explicitly. As a result, we could integrate the 
solvers from Trilinos directly with the Scalapack distributed matrices 
implemented above. The majority of the work in this package came down to 
implementing glue code between Trilinos, Scalapack and OPTIMET, as well as 
some refactoring to allow for separated solvers in OPTIMET. The performance 
gains are discussed below; in practice, they proved to be quite large. 

2.3. Rotation-coaxial translation decomposition of the matrix-vector 
operation 

The main operation during an OPTIMET simulation is simply a matrix-vector 
multiplication, where the vector describes the fields impinging upon each 
scatterer, and the matrix the scattered field from each scatterer projected on the 
basis centered at each scatterer. Hence an efficient simulation requires an 
efficient matrix-vector multiplication. Prior to this eCSE, OPTIMET relied on an 
explicit dense matrix of complex numbers, without any specific structure, which 
could help solve the linear system. 

However, the physical operation the matrix represents can be simplified into a 
set of multiplication by sparse matrices, resulting in fewer floating point 
operations for a given number of scatterers and associated local basis sets [6,7]. 
The original operation represents the following physics: (i) scatter the impinging 
wave onto a scatterer A using a basis centered at A; (ii) project the scattered field 
from the basis centered at A onto a basis centered at another scatterer B. The 
impinging wave at B is the sum of the input incident wave and the waves 
scattered by all other particles. Step (i) is a diagonal operation when described in 
a basis set centered at the scatterer. A naive implementation of (ii), however, 
results in a dense matrix-vector operation. It can be shown that it could be 
decomposed in the following set of sparse operations [6,7]: (ii-a) rotate the local 
basis onto a set of Cartesian coordinates such that the z-axis is in the direction A 
to B, (ii-b) project the rotated basis onto a basis local to B (with the same 
orientation of the co-ordinate system but at a different origin), (ii-c) rotate back 
onto the original Cartesian directions. (ii-a) is the inverse operation of (ii-c), 



whereas (ii-b) is a translation along  the line connecting A and B. These three 
operations are sparse when expressed between spherical harmonic basis. Even 
though we have now expressed the matrix-vector multiplication using four 
explicitly separate operations, rather than one, it still requires fewer actual 
floating point operations by a factor equivalent to the number of elements in the 
truncated spherical harmonic basis sets [6]. To be more specific, as a result of 
this matrix decomposition, the computational effort is reduced from 𝑂(𝑁3𝑛𝑚𝑎𝑥

6 ) 
to 𝑂(𝑁2𝑛𝑚𝑎𝑥

3 𝑁𝑖𝑡𝑒𝑟), where 𝑁 is the number of particles, 𝑛𝑚𝑎𝑥  is the truncation 
order for the vector spherical wave functions, and 𝑁𝑖𝑡𝑒𝑟 is the number of 
iterations needed to reach convergence. 

The coefficients for the sparse rotation and translation matrices can be obtained 
using recurrence relations [7]. These are expedient and need only be computed 
once per simulation. However, we have found that they are numerically unstable. 
More specifically, for a given precision, the order of the operations in the 
recurrence relation will influence the actual result. The numerical instability 
increases for higher-order spherical harmonics. In practice, it becomes 
noticeable only for components which bear little spectral weight. For instance, 
we have found instances for spherical harmonics of degree 20 where the rotation 
coefficients differ by 0.6×10-7 when switching from double to long-double 
precision. The same problem exists with the translation coefficients. We also 
expect that the translation-addition coefficients of the original implementations 
also suffer from the same issues. Further work should likely study this problem 
in more detail, e.g. by implementing the recurrence relations in a language with 
floating points of arbitrary precision. Since these coefficients are computed once 
and for all at the beginning of a simulation, we chose to implement the 
relationships internally using “long double” (80 or 128 bits, rather than 64 bits, 
depending on infrastructure and compilers) and truncate the result back to 64 
bits. This approach offers a good compromise between the complexity of the 
implementation, accuracy and performance. 

2.4. Parallel rotation-coaxial translation decomposition operation 

The matrices involved in OPTIMET have no particular structure, which could 
speed up computations. However, the algorithmic requirements for OPTIMET do 
offer some grounds for efficient parallelization: (i) the main operation limiting 
performance is a simple matrix-vector multiplication; (ii) the iterative solvers 
from Belos can be parameterized to use any custom function implementing a 
vector operation of some kind; (iii) the matrix does not change throughout the 
algorithm; and (iv) only vector quantities are of physical interest. 

The parallelization scheme is illustrated in Figure 2. The vector quantities are 
composed of the vector potentials projected onto local basis sets (øj(i), j(i))  
centered at each particle i. For simplicity, we distribute the vectors by assigning 
a contiguous range of particles to each process. For instance, the elements (øj(1), 
j(1)) and (øj(2), j(2)) are assigned to process 1, (øj(3), j(3)) and (øj(4), j(4)) to 
process 2 and so on. The matrix-vector operation is then decomposed into: an 
operation A which requires strictly local input data but may lead to distributed 
output data, and an operation B which may require data from other processes 
but will lead to output data needed only locally. For instance, the interaction of 
particle 2 with 3 can be computed from the data owned by process 2 but will 



lead to data required by process 1. It can be done in operation A by process 2. 
Similarly, given the input data from particle 3, process 1 can compute the output 
it owns resulting from the interaction of particles 1 and 3. In practice, we use a 
banded matrix, where the diagonal elements correspond to A (local input data), 
and the off-diagonal components to B (local output data). However, the 
algorithm is implemented for any binary partition of the scattering matrix (in 
blocks particle interactions). The algorithm proceeds as follows: 

1. Communicate local data needed for operation B by other processes 
2. Compute operation A using local input data 
3. Communicate non-local output data from operation A 
4. Compute operation B using data communicated in step 1 
5. Reduce local output data received from other processes in step 3 and 

computed locally in step 2 

Thus, the two communications patterns are interleaved with computations. This 
scheme could be applied to any matrix-vector multiplication. However, it is also 
uniquely well suited to the fast matrix multiplication operation described 
previously, since the interactions between pairs of particles are essentially 
independent from one another.  

 
Figure 2: Parallelization scheme for the rotation-coaxial translation decomposition of the matrix-vector 
operation. Each process owns all the basis coefficients for a contiguous range of particles. The matrix-vector 
operation is composed of blocks representing the interaction of particles (i, j). Furthermore, it can be 
decomposed over those operations that require coefficients owned locally, but may output non-local 
coefficients, and those that may require non-local coefficients, but always output contributions to local 
coefficients.   

  

3. Technical work undertaken during the eCSE 

OPTIMET is a C++ code originally developed in Prof. Panoiu’s group by Dr. 
Ahmed Al-jarro and Dr. Claudiu Biris. At the beginning of the eCSE project, it was 
a serial code written with somewhat less common and less efficient C++ design 
pattern, and using a large number of the dependencies. It had no test suite. It 
used at least three different linear algebra implementations, including an in-
house developed set of routines implementing standard matrix-vector 
multiplication. 

As such, our first objective was to streamline both the framework surrounding 
the code and the code itself. This work took place primarily at the start of the 



project. However, it went on as further need arose. The following is a non-
exhaustive list of the changes: 

 OPTIMET was added to GitHub, making full use of its version control 
feature and issue management system. 

 Automated regression tests were created, exercising the code as it existed 
on the first day of the project. This ensures that changes to the code 
during refactoring will not affect the output of the code. 

 A unittest framework was added, to allow for test-driven development of 
new features, as well as for the more heavily refactored parts of the code. 

 OPTIMET is integrated into UCL’s automated testing framework (Jenkins 
instance). 

 The dependencies were consolidated to include Eigen for linear algebra, 
boost and f2c (for a C version of Amos included in the code) for special 
mathematical functions, HDF5 for output serialization. Currently, GSL is 
also needed because of a legacy matrix multiplication routine in the code. 

 We removed much of the in-house developed linear algebra routines in 
favor of using Eigen throughout the code. These routines relied on 
matrices implemented as non-contiguous array of arrays. This sort of 
idiom is less well suited to high performance computing. 

 We introduced namespaces to the code, and removed instances of a less-
standard C++ idiom whereby classes of static member functions where 
used to the same effect. 

 We replaced the systematic multi-step resource allocation idiom with 
RAII (resource allocation is initialization). 

 We replaced naked pointers with the smart pointers and naked arrays 
with STL or Eigen containers, where relevant. 

 We instituted a type hierarchy for the major numerical types. 
 We replaced the chains of Boolean returns with exceptions when 

appropriate.     
 We re-implemented the set of routines computing the translation-

addition coefficients both to simplify the code by centering it on the 
mathematical recursion it implements and to remove hard-coded values 
limiting the scope of the recurrence relations and the applicability of the 
method. 

 We added a framework to the build system to automatically download 
dependencies when they are not found on the system. 

That is to say a fair share of the project – about a third of the time – was spent 
retooling and refactoring the code to meet standard research software 
development practices. We believe that this initial heavy investment was highly 
rewarding during the later stages of the projects when we added new features to 
the code. However, it is in subsequent years and features that we expect the full 
benefit of the work on code sustainability to be felt. 

There is still work needed before OPTIMET can be said to fully meet high 
research software development standards. The following is an unordered list of 
technical works that would improve the sustainability of the code in the future: 

 Remove fully the in-house developed linear algebra routines (and the GSL 
dependencies, as a result). 



 Find a replacement for Amos (used for special mathematic functions with 
complex arguments). Amos is based on a Fortran code with typical 
awkward API and incorrect results in given simple corner cases (e.g. at 
the origin). This will remove the dependency on F2C. 

 Refactor input and output, and the Geometry module. 
 Add logging. 
 Add timing counters to the logging system, to automate some aspect of 

profiling the code. 
 Profile the serial and MPI code for memory and speed bottlenecks. 

  

4. Performance and benchmarks 

OPTIMET is composed of somewhat orthogonal components, namely the 
construction of the system matrix, the matrix-vector operation and the solvers. 
The parallel direct solver requires Scalapack, but the iterative solvers can use 
either the Scalapack matrix-vector operation or the decomposed sparse matrix-
vector operation (RCTD). We present the performance of the matrix-vector 
multiplications first. Then we show that the iterative solvers far outperform the 
previously used direct solvers in the case of OPTIMET. Finally, we demonstrate 
the significant, total performance gain from changing the solver, switching to 
RCTD and code parallelization. 

All the benchmarks are run using the Scalapack implementation bundled with 
the Intel MKL on Dell C6100 dual processors with six cores per processor, and 
QDR InfiniPath chip-to-chip connectivity. The problems we will investigate 
consist of equally sized particles in vacuum, with a radius of a quarter of the 
wavelength, and a complex relative permittivity of (13.1 + i). By choosing a 
complex value for the dielectric constant we ensure that we test both the 
metallic and dielectric cases. These values are within the range of practical 
applications, but do not correspond to a specific material. The particles are 
arranged on a face-centered lattice. For a given number of particles, we grow a 
crystal along 001, 010, and 100 directions equally. The objective here is to have a 
problem that scales well with the number of particles without changing its 
symmetry and thus try and ensure difficulty of the problem remains the same. In 
other words, we aim for a set of problems with stable condition numbers. We 
expect that other geometries and materials will yield a somewhat different 
convergence behavior. However interesting, an extensive study of performance 
with respect to material properties and geometries falls outside the remit of this 
project. The iterative solvers are set to break for a tolerance of 10-6.  

4.1. Performance of the matrix-vector operation 

Figure 3 compares the performance of RTCD and the Scalapack multiplication on 
a single process. From a purely performance oriented point of view, RCTD 
become very advantageous for larger basis sets of spherical harmonics. Most 
notably, it is advantageous in the range that most applications will require. The 
increase in the cost of performing a single operation with respect to the number 
of particles is roughly quadratic, as indicated by the regression. This result is 
only a first step towards a performance model, and should be understood as 
such. Since Scalapack is a heavily optimized library, whereas the RCTD 
operations are currently implemented for correctness rather than speed (and 



thus not yet comprehensively profiled or optimized), these preliminary results 
are highly encouraging. Furthermore, the Scalapack implementations we have 
had access to, including those available on ARCHER, are unable to address 
matrices larger than 2GB (at least for some operations, including matrix 
manipulations), most likely because of the type of the underlying indices. This 
happens for relatively small problem sizes, e.g. for systems of 30 particles with 
spherical harmonics of degree 5 or less or 10 particles with spherical harmonics 
of degree 10 or less. OPTIMET and our implementation of RCTD rely on a well-
defined type hierarchy. It does not suffer of this problem for currently feasible 
applications, and would be trivial to update in the unlikely event that 64bit 
indexing becomes insufficient. 

 
Figure 3: The left panel shows the speedup between performing a rotation-coaxial translation of the matrix-
vector operation (RCTD) versus a Scalapack multiplication on a single process for a set of problems with 
varying number of particles (on the x-axis) and spherical harmonics cut-off (legend). RTCD becomes more 
advantageous for basis-sets with larger cut-offs. The right panel shows the amount of time in seconds taken by 
a single Scalapack matrix-vector operation for the same set of problems. 

We now turn to the parallelization of the RCTD, as reported in Figure 4. It shows 
that our scheme is efficient up to the limit of distribution (one particle per 
process) or to the limit of the tests we ran. The ideal parallelization scheme is 
represented with a solid black line. For larger problem sizes, our scheme 
achieves very good speedup. However, we would like in future work to probe the 
limits of the scheme further. We find that the parallelization scheme saturates 
only at the algorithmic limit, when the distribution of the problem hits the lower 
limit of one particle per process. We should remark that the largest problem in 
Figure 4 are mobilising the whole available memory in the case of serial (single 
node) execution. Finally, the scaling graphs for smaller basis sets (not shown 
here) are quite similar, though somewhat less efficient. This is likely because the 
communication and computations do not overlap as well since the latter takes 
much less time for smaller basis sets. It should be noted that we tested the code 
performance in a rather challenging situation, namely when the dielectric 
constant of the particles is complex (metallic particles). In this case one requires 
a relatively large number of harmonics to reach convergence, as in this case the 
electromagnetic field is strongly inhomogeneous.  



 
Figure 4: Parallelization of the rotation-coaxial translation decomposition of the matrix-vector operation with 
MPI. The ordinate reports the speedup, i.e. the time taken to perform the matrix-vector operation in parallel 
and per processor versus the time taken in serial. The abscissa reports the number of processes thrown at each 
problem. Each line represents a problem with a given size (varying number of particles, all spherical harmonics 
of degree 15 or less). The results show that for larger problems, we have not yet hit parallelization limit beyond 
which adding more processes would become unhelpful. Note that the current parallelization scheme can 
distribute the problem only to the lower limit of 1 particle per process. Hence, the 5-particle problem saturates 
at 5 processes. The number of coefficients corresponds to the size of the vectors in the matrix-vector operations. 

4.2. Performance of the iterative vs. direct solvers 

We examine in Figure 5 the performance of an iterative solver (GMRES) 
provided by Trilinos versus a direct provided by Scalapack. In both cases, we use 
the matrix-vector operation from Scalapack. For simplicity, we do not optimize 
for the block-size or grid shape of the block-cyclic matrix, nor for the different 
flavors of the iterative solvers, nor for the parameters of GMRES. We find that the 
iterative solver systematically outperforms the direct solver for all problem sizes 
and number of processes. We also find that the GMRES with RCTD systematically 
outperforms GMRES with the Scalapack multiplication. This is not surprising 
since for the basis set consisting of spherical harmonics of order 15 or less, we 
saw previously that RCTD outperforms Scalapack. 

 
Figure 5: Performance of the GMRES iterative solver vs. the direct solver from Scalapack. The left panel shows 
the speedup obtained when going from the direct to the iterative solver with respect to the number of 
processors, using the Scalapack matrix vector operation. The right panel compares the two matrix operations 
when using the iterative solver (the direct solver is not available with RCTD). In both cases, we show 
substantial speedup, especially for larger problem sizes. The basis set is composed of all spherical harmonics of 
order 15 or less. 



4.3. Performance of OPTIMET when operated in parallel 

Finally, we turn to the performance of OPTIMET as a whole, using all the features 
added during this project, namely RCTD and the GMRES iterative solver, over 
MPI. The results are presented in Figure 6. We find that for basis sets of 
spherical harmonics of order 15 or less, the parallelization scales well up to the 
maximum number processes we were able to throw at our benchmark, that is, 
until the distribution reaches one particle per process. For 500 particles 
distributed over 500 cores, we obtain a speedup of 152 over the performance in 
serial (with the same solver and matrix-vector operation). In practice, we have 
not yet reached the limitation of the parallelization technique. Since we are 
comparing to the serial implementation, the results presented in Figure 6 are 
limited by the amount of memory that a single node can hold. We have also 
examined the behaviour of larger problems requiring either fatter single nodes, 
or distribution over several nodes. We find that the solution to a 1000 particle 
problem will converge within a few seconds on 12 nodes and 144 cores (though 
it did not complete in 12 hours on 2 nodes, see below). With this achievement, 
we can claim that the current eCSE has not only made it possible to run much 
larger problems within reasonable time-scales, but also access problems that 
were previously limited by memory and by the time needed to create the matrix. 

 

Figure 6: Performance of OPTIMET when the iterative solver GMRES from Trilinos in conjunction with the 
Decomposed Sparse Matrix-Vector Operation. The left panel shows the speedup achieved with respect to the 
serial code. The right panel shows the time taken by the serial code with respect to the number of particles. 

Finally, it turns out for larger systems that setting up the matrix-vector operators 
is now more computationally intensive than solving the linear equations. Indeed, 
the same run of 1000 particles mentioned earlier takes longer on 2 nodes than 
the 12 hours of wall-time we allowed for it. We expect this is a result of filling the 
available memory and the time needed for constructing the matrix-vector 
operation. Setting up the operation for a 1000 particles on 144 cores takes a few 
minutes, whereas solving the linear system takes a few seconds. It should be 
noted that setting up the problem grows as the square of the number of particles. 
Future work will require benchmarking and profiling the setup stage of the 
matrix-vector operation, rather than just its application. Preliminary profiling 
results seem to indicate that the current implementation spends much time 
allocating and deallocating small arrays. This is not unexpected if we consider 
how we coded the computation of different coefficients for simplicity and 
accuracy rather than speed. However, it is easy to re-engineer the memorization 
part of the recurrence coding to limit the number of memory allocations.  



 

5. Conclusion 

In this report we have described the structure, code development activities 
(parallel and serial), characterization tests and a few application examples of 
OPTIMET. The code has been written and tested for validity and scalability, as 
illustrated in this report, with strong scalability being proven. In particular, the 
code has been developed along the following directions: i) implemented an auto-
distribution mechanism for all the computational work required to construct and 
solve the system of linear equations for the expansion coefficients of the 
electromagnetic field, the main physical quantities computed with OPTIMET, and 
ii) dramatically advanced the code functionality by implementing an efficient, 
parallelized iterative-scheme complemented by a state-of-the-art acceleration 
engine. A key outcome of this work is that by adding iterative solvers in 
conjunction with using the rotation-coaxial translation decomposition for the 
matrix–vector multiplications, the problem complexity has been greatly reduced, 
from 𝑂(𝑁3𝑛𝑚𝑎𝑥

6 ) to 𝑂(𝑁2𝑛𝑚𝑎𝑥
3 𝑁𝑖𝑡𝑒𝑟), where 𝑁 is the number of particles, 𝑛𝑚𝑎𝑥  is 

the truncation order for the vector spherical functions, and 𝑁𝑖𝑡𝑒𝑟is the number of 
iterations needed to reach convergence. This remarkable improvement of the 
code efficiency translated to a significant increase of the complexity of the 
problems that can be tackled by OPTIMET.  In particular, now OPTIMET can be 
used to model a broad array of science and engineering problems, including 
photonic and plasmonic crystals, absorption engineering, nanoscience and 
nanotechnology, plasmonics, transformation optics, optical tomography and 
colloidal chemistry. In particular, two journal papers based on OPTIMET have 
already been produced by Prof Panoiu’s group and his collaborators [8,9], one 
already published and one submitted. 

OPTIMET has been developed for ARCHER, but has also been tested on Legion, 
UCL's main HPC cluster. It is freely available via GitHub to the computational 
electromagnetics community and is installed on ARCHER as well, so that we 
expect a significant increase in user numbers. The fully verified and tested code 
will also be made available through a dedicated webpage at UCL and through the 
program library of Computer Physics Communications journal via a peer-
reviewed journal article. The eCSE support was for 12 months FTE divided 
between two people, Dr. Mayeul d’Avezac and Dr. Gary Macindoe.  
 

Acknowledgments 

This work was funded under the embedded CSE programme of the ARCHER UK 
National Supercomputing Service (http://www.archer.ac.uk). 
 

Bibliography 
                                                        
1. M. Mishchenko, L. Travis, and A. Laci, Scattering, Absorption and Emission of 
Light by Small Particles, (Cambridge University Press 2002). 
2. M. I. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov, and T. Wriedt, 
“Comprehensive T-matrix reference database: A 2004–06 update,” J. Quant. Spectr. 
Rad. Trans. 106, 304–324 (2007). 
 

http://www.archer.ac.uk/


                                                                                                                                                               
3. B. Stout, J.-C. Auger, and J. Lafait, “A transfer matrix approach to local field 
calculations in multiple scattering problems,” J. Mod. Opt. 49, 2129–2152 (2002). 
4. C. G. Biris and N. C. Panoiu, “Second harmonic generation in metamaterials 
based on homogenous centrosymmetric nanowires,” Phys. Rev. B, 81, 195102 
(2010). 
5. M. Lax, “Multiple scattering of waves,” Rev. Mod. Phys. 23, 287–310 (1951). 
6. N. A. Gumerov and R. A. Duraiswami, “A scalar potential formulation and 
translation theory for the time-harmonic Maxwell equations,” J. Comput. Phys. 
225, 206–236 (2007). 
7. N. A. Gumerov and R. A. Duraiswami, “Recursions for the Computation of 
Multipole Translation and Rotation Coefficients for the 3-D Helmholtz Equation,” 
SIAM J. Sci. Comput. 25, 1344–1381 (2004). 
8. A. Al-Jarro, C. G. Biris, and N. - C. Panoiu, “Resonant mixing of optical orbital and 
spin angular momentum by using chiral silicon nanosphere clusters,” Opt. Express 
24, 6945 (2016). 
9. Xiaoyan Y.Z. Xiong, A. Al-Jarro, L. J. Jiang, N. - C. Panoiu, and Wei E.I. Sha, 
“Mixing of Spin and Orbital Angular Momenta via Second-harmonic Generation in 
Plasmonic and Dielectric Chiral Nanostructures,” Phys. Rev. B (submitted). 




