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1.	Abstract	
	
Fluidity	(fluidity-project.org)	is	a	fully-featured,	open	source,	computational	fluid	
dynamics	(CFD)	framework.	It	comprises	several	advanced	numerical	models	
based	on	the	finite	element	method	as	well	as	a	number	of	novel	numerical	
features	(e.g.	mesh	adaptivity)	making	it	suitable	for	multi-scale	simulations	
(Piggott	et	al.,	2008).	It	is	largely	unique	in	its	abilities	to	also	solve	large-scale	
geophysical/oceanographic	problems.	Key	examples	include	marine	renewable	
energy,	tsunami	simulation	and	inundation,	and	palaeo-tidal	simulations	for	
hydrocarbon	exploration	(Martin-Short	et	al.,	2015;	Mitchell	et	al.,	2010;	Mitchell	
et	al.,	2011;	Oishi	et	al.,	2013;	Shaw	et	al.,	2008).	
	
The	current	Fluidity	codebase	comprises	hand-written	Fortran	code	to	perform	
the	finite	element	discretisation.	Not	only	is	this	hand-written	code	potentially	
sub-optimal,	it	presents	issues	regarding	its	maintainability	and	longevity;	
should	one	want	to	run	Fluidity	on	a	newer	hardware	architecture	more	suited	
to	larger	scale	problems	in	the	future,	then	the	entire	codebase	may	have	to	be	
re-written.	Furthermore,	the	need	for	numerical	modellers	to	not	only	be	experts	
in	their	field	of	science,	but	also	be	well-versed	in	parallel	programming	and	
code	optimisation,	is	unsustainable	in	the	long-term.	
	
This	eCSE	project	delivers	a	step-change	in	the	performance	and	functionality	of	
the	shallow	water	model	within	Fluidity,	accomplished	by	using	the	Firedrake	
(firedrakeproject.org)	framework	for	the	automated	solution	of	partial	
differential	equations	using	code	generation	techniques	(Rathgeber	et	al.,	
Submitted).	A	key	aim	is	to	remove	Fluidity's	existing	hand-written	Fortran	finite	



element	discretisation	code	and	instead	generate	it	automatically	from	a	higher-
level	model	description	(written	in	a	language	known	as	the	Unified	Form	
Language,	UFL	(Alnaes	et	al.,	2014)),	thereby	hiding	complexity	through	layers	of	
abstraction.	This	allows	the	users	of	the	resulting	models	to	focus	on	the	problem	
specification	and	the	end	results	of	simulations.	The	Firedrake	project	achieves	
all	of	this	in	a	performance-portable	manner	using	the	PyOP2	framework	
(Markall	et	al.,	2013;	Rathgeber	et	al.,	2012)	to	target	and	optimise	the	
automatically-generated	code	for	a	desired	hardware	architecture.	Moreover,	in	
contrast	to	traditional,	hand-written	models,	such	as	Fluidity,	the	use	of	code	
generation	techniques	has	been	shown	to	deliver	significantly	enhanced	
performance,	as	well	as	improved	code	maintainability	(e.g.	Maddison	and	
Farrell	(2014);	Olgaard	and	Wells	(2010)).	
	
2.	Project	Outcomes	
	
2.1	Re-engineering	
	
The	first	phase	of	the	project	involved	building	upon	some	recently	completed	
proof-of-concept	work	(Jacobs	and	Piggott,	2015)	on	the	use	of	Firedrake	to	
solve	idealised	shallow	water	(SW)	problems,	to	replicate	Fluidity's	current	SW	
solver	using	code	generation	techniques.	This	model	comprises	a	collection	of	
files,	mostly	written	in	the	high-level	Unified	Form	Language	(Alnaes	et	al.,	2014)	
which	describes	the	governing	equations	in	their	'weak/variational	form'.	
	
An	initial	step	was	to	extend	the	proof-of-concept	code	to	solve	both	the	steady	
(i.e.	non	time	dependent)	and	unsteady	(i.e.	time	dependent)	forms	of	the	
shallow	water	equations.	This	was	accomplished	by	adding	a	new	option	to	the	
Fluidity	simulation	configuration	files	to	enable/disable	the	time	derivative	term	
in	the	shallow	water	equations.	These	extensions	were	then	verified	and	
validated	to	demonstrate	the	model's	correctness;	the	results	of	this	testing	
process	are	detailed	in	the	next	section.	
	
Clearly	the	re-engineering	of	every	model	in	the	whole	Fluidity	codebase	is	a	
major	task.	Therefore,	during	the	transition,	users	are	given	the	option	to	
continue	using	the	old	legacy	code	or	switch	to	the	new	automatically-generated	
code	developed	with	Firedrake	which	will	provide	performance	portability	on	
ARCHER	and	its	successors.	This	is	accomplished	by	a	pre-processing	program	
developed	during	this	eCSE	to	convert	'old	style'	Fluidity	simulation	
configuration	files	to	a	'new	style'	one	expected	by	the	new	re-engineered	model.	
	
2.2	Testing	&	benchmarking	
	
A	rigorous	testing	campaign	incorporating	a	range	of	unit,	regression,	analytical,	
and	manufactured	solution	tests,	as	well	as	real-world	case	studies,	was	
undertaken	to	ensure	the	correctness	of	the	new	re-engineered	model.	The	
figures	below	illustrate	two	such	test	cases,	used	to	verify	and	validate	the	code.	
	



	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
Figure:	A	visualisation	of	a	numerical	simulation	of	flooding	following	a	dam	breach.	The	setup	follows	that	of	Liang	et	al.	
(2008)	and	considers	a	high-level	of	water	that	is	initially	held	back	by	a	dam	wall	(shaded	grey).	A	75	metre-wide	breach	in	
the	wall	is	then	considered,	through	which	water	rushes	into	the	lower	section	to	form	a	tidal	bore	wave.	Swirling	vortices	
are	visible	near	the	corners	of	the	breach.	The	simulation	was	performed	on	Archer	to	validate	the	numerical	model.	

	

	
	
	
	
	
	
	
	
	
	
	
	
Figure:	The	results	from	the	MMS	(Roache,	2002)	convergence	analysis.	Both	the	P2-P1	and	P0-P1	element	pairs	were	
considered	to	check	the	correctness	of	both	the	CG	and	DG	finite	element	methods	implemented	in	the	re-engineered	code.	
The	left-hand	figure	demonstrates	that	the	velocity	in	the	P2-P1	and	P0-P1	simulations	converge	at	third-order	and	first-
order	as	expected.	The	right-hand	figure	shows	the	convergence	results	for	the	free	surface	field.	For	the	P2-P1	simulation	
this	is	second-order	as	expected	for	a	free	surface	field	represented	by	P1	(linear)	polynomial	basis	functions.	The	first-order	
convergence	in	the	P0-P1	field	is	likely	a	result	of	the	coupling	with	the	lower-order	velocity	field	and	the	use	of	a	first-order	
upwinding	scheme	for	advection	across	discontinuous	element	facets.	
	
Benchmarking	of	the	old	and	new	solvers	on	ARCHER	followed	from	
performance	data	collected	from	these	test	cases.	Some	strong	scaling	results	are	
shown	in	the	figures	below.	The	assembly	stage	for	the	re-engineered	code	is	
significantly	faster	than	the	legacy	code	(approximately	half	an	order	of	



magnitude	faster)	and	scales	well.	However,	the	solver	costs	are	higher	as	a	
result	of	the	difference	in	the	solution	method	used.	Solving	the	fully-coupled	
system	in	the	re-engineered	code	is	very	costly	and	requires	a	different	PETSc	
(Balay	et	al.,	2014)	solver	configuration	(GMRES	(Saad	and	Schultz,	1986)	with	a	
more	complex	Fieldsplit	preconditioner	(Brown	et	al.,	2012),	compared	to	
GMRES	with	SOR),	although	it	may	be	more	robust	than	the	projection	method	
used	in	the	legacy	code.	

	
	
	
	
	
	
	
	
	
	
	
	

Figure:	Run-time	against	the	number	of	MPI	processes	on	ARCHER,	for	the	2D	dam	break	problem.	
This	considered	the	P2-P1	element	pair	with	approximately	3	million	mesh	vertices.	

	
	
	
	
	
	
	
	
	
	
	
	

Figure:	Run-time	against	the	number	of	MPI	processes	on	ARCHER,	for	the	flow	past	a	square	
problem.	This	considered	the	P2-P1	element	pair	with	approximately	1	million	mesh	vertices.	

	
	

2.3	New	Functionality	
	
The	fact	that	the	re-engineered	code	is	based	upon	automatically-generated	code	
opens	up	huge	possibilities	for	bringing	important	new	functionality	to	Fluidity's	
user	community,	enabling	new	science	and	engineering	to	be	conducted.	
Firedrake	interfaces	with	the	FIAT	finite	element	(FE)	tabulator	from	the	FEniCS	
project	(Kirby,	2004)	to	provide	practically	unlimited	orders	of	basis	functions	to	
discretise	the	solution	fields	in	space.	The	legacy	Fluidity	code	is	currently	
limited	to	a	maximum	order	of	3,	whereas	users	can	now	simply	modify	the	
“polynomial	order”	option	in	a	simulation's	configuration	file	in	order	to	use	
higher	orders,	enabling	more	accurate	simulations	and	easier	usability	from	a	
model	developer's	perspective.	
	



Three	element	pairs	(P0-P1,	P1DG-P2	and	P2-P1)	were	evaluated	to	provide	
guidelines	for	suitable	discretisations	for	different	classes	of	problem	in	order	to	
achieve	optimal	computational	performance	on	ARCHER,	which	will	further	help	
to	enable	previously	untenable	simulations.	A	single	tidal	turbine	in	a	steady	
channel	flow	was	considered,	as	well	as	the	spread	of	a	Gaussian	'bump'	in	the	
free	surface	field	to	approximate	a	tsunami	wave.	
	
It	was	found	that	the	P0-P1	element	pair,	although	computationally	inexpensive,	
resulted	in	significant	numerical	diffusion	of	the	'tsunami'	wave	due	to	the	low	
order	of	the	basis	function	used	to	represent	the	velocity	field.	The	P1DG-P2	pair	
also	featured	considerably	reduced	wave	velocity,	compared	to	the	P2-P1	
simulation.	This	is	likely	a	result	of	excessive	numerical	diffusion	from	the	
upwinding	advection	scheme	featured	in	the	discontinuous	Galerkin	finite	
element	method's	implementation.	More	advanced	schemes	such	as	slope	
limiters	could	potentially	reduce	this	numerical	diffusion	and	maintain	a	sharper	
wave	front;	however,	such	schemes	are	not	expressible	in	UFL	and	require	
implementation	as	a	lower-level	C	kernel	which	can	be	passed	directly	to	PyOP2.	
In	the	tidal	turbine	simulations,	the	P1DG-P2	and	P2-P1	element	pairs	gave	
comparable	wake	lengths	and	behaviour,	but	the	effect	of	the	turbine	on	the	flow	
was	almost	unnoticeable	with	a	P0-P1	discretisation,	again	as	a	result	of	the	low	
order	of	basis	function	used.	For	production	simulations,	such	as	the	one	shown	
in	the	figure	below,	the	P2-P1	was	used	throughout	as	a	result	of	its	robustness	
and	ability	to	maintain	a	relatively	high	order	of	accuracy.	
	
The	other	piece	of	new	functionality	brought	about	by	the	use	of	Firedrake	is	the	
integration	of	the	libadjoint	library	(Farrell	et	al.,	2013)	to	automatically	
'differentiate'	the	re-engineered	shallow	water	solver.	Developing	adjoints	to	
models	is	very	challenging,	but	code	generation	has	opened	up	new	possibilities	
to	do	this	in	a	rapid	and	sustainable	manner.	Preliminary	simulations	involving	
flow	past	tidal	turbine	arrays	(see	figure	below)	have	shown	how	varying	the	
position	of	each	turbine	can	affect	the	total	amount	of	power	generated	due	to	
wake	effects	and	reduced	drag.	However,	man-made	'naïve'	configurations	are	
not	necessarily	optimal.	Adjoint	modelling	has	the	potential	to	optimise	the	
positions	of	the	turbines	in	order	to	maximise	the	amount	of	power	generated	
(Funke	et	al.,	2014).	
	
	
	
	



Figure:	Simulation	of	flow	past	a	set	of	15	tidal	turbines	(each	of	size	5	x	20	x	50	m)	in	a	channel	with	a	peak	flow	velocity	
of	2	m/s.	This	simulation	was	performed	on	ARCHER	using	a	mesh	of	~100,000	vertices	distributed	over	48	MPI	

processes.	The	magnitude	of	the	velocity	at	t	=	1,116	s	is	shown	in	the	entire	3	km	x	1	km	domain.	A	Smagorinsky	LES	
model	was	used	to	parameterise	the	wake	turbulence.	Staggering	the	turbines	in	this	way	produces	significantly	greater	

power	output	compared	to	simple	grid-like	layouts	or	increasing	the	spacing	between	each	turbine.	
	
	
2.4	Training,	user	engagement	and	impact	
	
A	new	set	of	user	documentation	has	been	written	for	the	re-engineered	code,	
and	is	now	automatically	built	and	hosted	online	at:	http://firedrake-
fluids.readthedocs.org.	User	engagement	and	impact	will	follow	from	the	
extensive	(and	growing)	academic	and	industrial	user	community	being	able	to	
solve	larger	and	more	challenging	problems	with	the	re-engineered	code,	thus	
allowing	higher	solution	fidelity	(less	parameterisation)	and	enhanced	
confidence	in	the	study	of	important	and	timely	issues	related	to	energy	security	
and	natural	hazards.	Furthermore,	the	new	functionality	in	the	re-engineered	
code	allows	this	user	community	to	take	advantage	of	the	adjoint	technology	that	
has	already	been	demonstrated	for	the	optimisation	of	tidal	turbine	arrays	in	the	
OpenTidalFarm	package	(Funke	et	al.,	2014),	and	to	also	consider	optimisation,	
sensitivity,	and	uncertainty	questions	in	new	application	areas.	

	
3.	Conclusion	
	
Through	the	insertion	of	code	generation	techniques	into	the	Fluidity	CFD	
framework,	this	eCSE	project	has	successfully	delivered	a	significant	
performance	improvement	in	the	finite	element	assembly	stage	of	Fluidity's	
shallow	water	model.	With	automatic	code	optimisations,	matrix	and	form	
caching	techniques,	and	the	efficient	execution	of	the	code	using	the	PyOP2	
library	(Markall	et	al.,	2013;	Rathgeber	et	al.,	2012),	the	assembly	operations	are	
almost	an	order	of	magnitude	faster	than	the	legacy,	hand-written	Fortran	
codebase.	Furthermore,	this	project	has	prepared	Fluidity	for	running	the	same	
models	on	modern	state-of-the-art	high-performance	hardware	architectures,	
such	as	the	new	Intel	Xeon	Phi	coprocessors,	without	the	need	for	model	
developers	to	re-write	any	of	their	existing	code.	
	
While	the	run-time	required	to	assemble	the	system	of	model	equations	has	been	
reduced,	the	run-time	spent	in	the	linear	solvers	is	not	currently	comparable	
with	the	legacy	code	due	to	the	differences	in	the	overall	solution	methods	used;	



the	legacy	code	uses	a	relatively	inexpensive	projection	method,	compared	to	the	
Firedrake-based	code	which	solves	the	fully-coupled	matrix	system	with	
complex	fieldsplit	preconditioners.	A	similar	projection	method	(known	as	IPCS	
(Goda,	1979))	was	also	implemented	within	the	new	Firedrake-based	code;	here	
the	solver	times	were	comparable	to	those	of	the	legacy	code,	but	IPCS	was	found	
to	not	provide	particularly	robust	solutions.	
	
Several	new	pieces	of	functionality	have	been	introduced	that	will	enable	the	
expansion	of	Fluidity's	existing	userbase	and	allow	users	to	tackle	large,	
interesting	scientific	problems.	These	include	the	integration	of	the	FIAT	library	
for	generating	basis	functions	of	arbitrary	order	to	permit	higher	solution	
accuracy,	and	also	the	integration	of	the	Firedrake-Adjoint	library	(Farrell	et	al.,	
2013;	Funke	et	al.,	2014)	which	has	a	wide	range	of	possible	applications.	The	
preliminary	work	on	tidal	turbine	modelling	performed	during	this	eCSE	project	
is	currently	being	extended	to	investigate	the	validity	of	steady-state	adjoint	
computations	using	non-physically	large	viscosity	values	(performed	using	the	
optimisation	functionality	in	the	OpenTidalFarm	package	(Funke	et	al.,	2014)),	
and	comparing	the	results	with	lower	viscosity,	transient	runs	which	
parameterise	the	turbine	wakes	with	the	LES	turbulence	model.	
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