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4.1 Abstract	
In	 this	 project	 a	 standalone	 general-purpose	 numerical	 library,	 named	
libsupermesh,	 was	 created.	 This	 library	 significantly	 simplifies	 the	 process	 of	
writing	 new	 models,	 and	 adding	 new	 functionality	 to	 existing	 models,	 which	
make	 use	 of	 two	 different	 unstructured	 meshes.	 The	 library	 enables	 parallel	
supermeshing	 calculations	 which	 involve	 two	 different	 unstructured	 meshes	
with	non-matching	domain	decompositions.	
	
The	 software	 is	 available	under	 the	LGPL	2.1	 license	 in	public	 repositories	 [1],	
and	its	use	is	due	for	imminent	merge	into	the	Fluidity	[2]	project	codebase.			
	
4.2 Introduction	
The	unstructured	finite	element	model	Fluidity	is	capable	of	numerically	solving	
the	 Navier-Stokes	 equations	 and	 accompanying	 field	 equations	 on	 arbitrary	
unstructured	finite	element	meshes	in	one,	two	and	three	dimensions	[2].	
	
Models	which	use	multiple	non-matching	unstructured	meshes	generally	need	to	
solve	a	computational	geometry	problem,	and	construct	intersection	meshes	in	a	
process	known	as	supermeshing	[3-4].	The	algorithm	for	solving	this	problem	is	
known	 [4-6]	 and	 has	 an	 existing	 implementation	 in	 the	 unstructured	 finite	
element	model	Fluidity,	but	this	implementation	is	deeply	embedded	within	the	
code	and	unavailable	for	widespread	use.	This	project	addresses	these	issues	via	
the	 creation	 of	 a	 standalone	 general-purpose	 numerical	 library,	 libsupermesh,	
which	can	be	easily	integrated	into	new	and	existing	numerical	models.	
	
Furthermore,	 for	 parallel	 calculations,	 the	 existing	 implementation	 in	 Fluidity	
assumes	 that	 the	 meshes	 used	 have	 domain	 decompositions	 which	 match	
perfectly.	This	limits	access	to	this	powerful	numerical	technique,	and	limits	the	
scope	 of	multimesh	modelling	 applications.	 This	 project	 addresses	 the	 general	
problem	whereby	 a	 numerical	model	may	need	 to	 consider	 not	 only	 two	non-
matching	unstructured	meshes,	but	also	allow	the	two	meshes	to	have	different	
parallel	partitionings.	
	
4.3 Construction	 of	 a	 general	 purpose	 supermeshing	 library	

(WP1)	
Fluidity	implements	the	local	supermeshing	algorithm	described	in	[4]	(see	also	
[5-6]).	 This	 implementation	 includes	 an	 efficient	 advancing	 front	 based	 spatial	
searching	 algorithm,	 and	 a	 more	 broadly	 applicable	 R*-tree	 spatial	 searching	
algorithm	using	libspatialindex	[7].	Element	intersection	is	performed	using	code	
from	the	Wild	Magic	computer	graphics	engine,	or	in	3D	using	a	highly	optimised	
custom	 tetrahedron	 intersection	 code	 based	 on	 the	 “plane-at-a-time”	 clipping	
algorithm	described	 in	 [8].	Additional	 intersection	 functionality	 is	provided	via	
integration	 with	 the	 CGAL	 computational	 geometry	 library	 [9].	 The	
implementation	is	tightly	integrated	with	Fluidity	core	data	structures,	which	are	



in	 general	 unsuitable	 for	 use	 with	 external	 codes.	 For	 example	 Fluidity	 mesh	
data	 structures	 include	 detailed	 information	 regarding	 discrete	 function	 space	
and	numerical	integration	rules,	which	is	inappropriate	for	external	codes	which	
support	a	different	set	of	function	spaces.	
Implementation	
The	supermeshing	code	was	extracted	from	Fluidity	and	placed	in	libsupermesh;	
a	 standalone	 open	 source	 library.	 The	 CGAL	 element	 intersection	 code	 is	 a	
largely	 unused	 experimental	 feature	 and	was	 not	 transferred	 to	 libsupermesh.	
The	 Wild	 Magic	 code	 was	 replaced	 with	 polygon	 intersection	 via	 an	
implementation	 of	 the	 Sutherland-Hodgman	 clipping	 algorithm	 [10].	 Fluidity	
data	 structures	 were	 removed	 and	 procedures	 were	 updated	 to	 use	
straightforward	interfaces	accepting	fundamental	data	types	as	arguments.	The	
interfaces	 accept	 arbitrary	 simplices	 as	 input,	 and	 return	 a	 local	 simplex	
supermesh.	 Auxiliary	 routines	 for	 intersection	 of	 simplices	 and	 convex	 cubical	
elements	are	provided.	Further	routines	for	the	intersection	of	convex	polygons,	
and	 for	 the	 intersection	 of	 tetrahedra	with	 arbitrary	half-spaces,	 are	 provided.	
Additional	 functions	are	provided	 for	 the	division	of	 convex	hexahedra,	 square	
pyramids,	triangular	prisms,	and	convex	polygons	into	simplices.	
	
The	existing	advancing	front	algorithm	intersection	identification	algorithm	was	
re-written	 for	 efficiency.	 New	 quadtree	 and	 octree	 intersection	 identification	
code	was	written	for	2D	and	3D	meshes	respectively	and	are	generally	found	to	
compete	 in	 terms	 of	 efficiency	 with	 (and	 are	 sometimes	 faster	 than)	 the	
advancing	 front	 intersection	 finder	algorithm.	The	advancing	 front	 intersection	
finder	 requires	 certain	 properties	 of	 the	 meshes	 considered	 [5].	 The	 new	
quadtree	and	octree	intersection	finders	do	not	require	this	structure,	and	hence	
may	 be	 of	 use	 in	 more	 general	 problems.	 Fluidity	 provides	 an	 R*-tree	
intersection	 finder	 which	 uses	 libspatialindex	 [7].	 The	 interface	 to	
libspatialindex	was	significantly	updated.	In	particular	it	was	identified	that	the	
implementation	 in	 Fluidity	 led	 to	 the	 heavy	 use	 of	 disk	 caching	 for	 larger	
problems.	 The	 implementation	 in	 libsupermesh	 was	 modified	 to	 use	 only	
memory	caching.	
	
Fluidity	 was	 modified	 to	 use	 the	 new	 libsupermesh	 library.	 This	 required	
minimal	changes	to	Fluidity	code.	
Regression	testing	
A	 suite	 of	 regression	 tests	 for	 the	 libsupermesh	 library	 was	 created.	 The	 test	
suite	 performs	 several	 tests	 in	 order	 to	 validate	 that	 the	 library	 can	 correctly	
identify	possible	element	intersections	and	create	the	local	supermesh.	
	
Fluidity	was	 also	part	 of	 the	 testing	 strategy	of	 this	project.	 Since	Fluidity	was	
modified	to	use	the	new	libsupermesh	library	it	was	possible	to	use	the	Fluidity	
regression	 tests.	 The	 Fluidity	 project	 provides	 a	 large	 number	 of	 such	 tests	
(although	 only	 a	 subset	 use	 the	 supermeshing	 functionality).	 All	 Fluidity	 test	
cases	were	 run	with	 and	without	 the	 libsupermesh	 library,	 and	 it	was	verified	
that	all	output	was	identical	(to	within	expected	small	numerical	errors).		
	



Valgrind	 was	 used	 to	 test	 libsupermesh	 for	 memory	 leaks,	 and	 the	 code	 was	
compiled	with	the	following	GNU	GFortran	options	enabled	to	verify	correctness:	
“-O0	 -g	 -Wall	 -fcheck=all	 -ffpe-trap=invalid,zero,overflow,underflow	 -finit-
integer=-66666	-finit-real=nan	-fimplicit-none”	
Serial	performance	
Several	 benchmark	 calculations	 were	 performed	 in	 order	 to	 measure	 the	
performance	of	the	new	intersection	finder	and	element	intersector	algorithms.		
	
The	 2D	 benchmarks	 take	 as	 input	 two	 quasi-uniform	 resolution	 unstructured	
triangle	meshes	of	an	equilateral	triangle	domain,	A	and	B,	with	mesh	B	having	
roughly	one	half	the	element	size	of	mesh	A.	The	meshes	were	generated	using	
Gmsh	[11].	The	resolution	of	the	input	meshes	was	increased	until	mesh	B	had	
7.6	million	elements.	Figure	1	shows	the	runtime	of	the	various	2D	intersection	
identification	 algorithms	 and	 element	 intersectors,	 with	 measurements	 from	
Fluidity	for	comparison.	

Figure	1	2D	serial	performance	benchmark	

For	 the	R*-tree	 intersection	 finder	 the	runtime	 in	 the	 largest	case	was	reduced	
from	 141	 seconds	 with	 Fluidity,	 to	 70	 seconds	 with	 libsupermesh.	 The	
performance	 improvement	 is	 attributed	 to	 the	 switch	 from	 disk	 to	 memory	
caching	 for	 the	 larger	 cases	 considered.	 For	 the	 advancing	 front	 intersection	
finder	the	runtime	in	the	largest	case	was	reduced	from	39	seconds	with	Fluidity,	
to	14	seconds	with	libsupermesh.	
	
For	the	largest	case	libsupermesh	took	8.2	seconds	to	intersect	and	calculate	the	
area	of	the	2D	supermesh;	Fluidity	took	13.5	seconds.		
	
The	 3D	 benchmarks	 take	 as	 input	 two	 quasi-uniform	 resolution	 unstructured	
tetrahedra	meshes	 of	 a	 square	 pyramid	 domain,	 A	 and	B,	with	mesh	B	 having	
roughly	one	half	the	element	size	of	mesh	A.	The	meshes	were	generated	using	
Gmsh	[11].	The	resolution	of	the	 input	meshes	was	increased	until	mesh	B	had	
4.1	million	elements.	Figure	2	shows	the	runtime	of	the	various	3D	intersection	
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identification	 algorithms	 and	 element	 intersectors,	 with	 measurements	 from	
Fluidity	for	comparison.	

Figure	2	3D	serial	performance	benchmark	

The	results	show	that	when	using	 the	R*-tree	spatial	searching	algorithm	from	
libspatialindex	the	runtime	of	libspatialindex	is	not	improved	as	compared	with	
the	performance	of	Fluidity.	Since	Fluidity	and	libsupermesh	both	use	versions	of	
the	libspatialindex	library	for	this,	if	disk	versus	memory	caching	is	not	an	issue	
(for	example	if	disk	caching	is	not	triggered	in	the	Fluidity	implementation)	then	
no	 significant	 difference	 in	 performance	 is	 expected.	 For	 the	 advancing	 front	
intersection	finder	the	runtime	in	the	largest	case	is	reduced	from	116	seconds	
with	Fluidity,	to	16	seconds	with	libsupermesh.	
	
libsupermesh	 took	67	 seconds	 to	 intersect	 and	 calculate	 the	 volume	of	 the	 3D	
supermesh,	whereas	Fluidity	took	117	seconds.	
	
libsupermesh	 uses	 simple	 interfaces,	 whereas	 Fluidity	 uses	 complex	 internal	
data	 structures.	 The	 performance	 results	 measure	 only	 the	 runtime	 of	 the	
intersection	finders	and	intersector	functionality	and	disregard	all	other	actions,	
including	input	and	initialisation.	Measuring	the	additional	cost	of	allocating	and	
deallocating	 Fluidity	 data	 structures	 would	 lead	 to	 further	 reduced	 Fluidity	
performance	as	measured	in	these	benchmarks.	
	
These	 serial	 benchmarks	 were	 performed	 using	 Fluidity	 4.1.13	 and	
libsupermesh	 version	 1.0.0.	 The	 presented	 results	 are	 the	 mean	 of	 three	
measurements	(from	four	runs	with	the	first	discarded	in	each	case)	performed	
on	a	system	with	4	Intel	i5-3470	CPUs	and	16	GiB	of	RAM.		
	
4.4 General	parallelisation	(WP2)	
The	second	main	objective	of	the	project	was	to	implement	a	parallel	algorithm	
for	 the	 case	 where	 a	 numerical	 model	 may	 consider	 two	 non-matching	
unstructured	 meshes	 which	 have	 different	 parallel	 partitionings.	 In	 order	 to	
handle	these	cases	the	parallel	Fluidity	implementation	assumes	that	the	meshes	
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used	 have	 domain	 decompositions	which	match	 perfectly.	While	 this	 property	
may	be	satisfied	by	parallel	interpolation	in	adaptive	mesh	Fluidity	calculations,	
it	cannot	be	expected	to	hold	in	general.		
Implementation	
Constructing	a	local	supermesh	involves	three	key	steps:	

1. Identification	of	pairs	of	elements,	one	on	each	mesh,	which	intersect;	
2. Generation	of	a	mesh	of	their	intersection	(the	"local	supermesh");	
3. The	transfer	of	data	onto	this	intersection	mesh.	

	
This	 algorithm	 directly	 parallelises,	 but	 only	 if	 the	 decompositions	 of	 the	 two	
meshes	are	perfectly	aligned.	
	
In	 the	 following	 the	 local	mesh	A	 refers	 to	 the	 local	 submesh	 (or	 partition)	 of	
mesh	A	stored	on	the	current	MPI	process.	Similarly	 the	 local	mesh	B	refers	 to	
the	 local	 submesh	 (or	partition)	of	mesh	B	 stored	on	 the	 current	MPI	process.	
The	 received	mesh	B	 refers	 to	 a	 submesh	of	mesh	B	 received	 from	a	 different	
MPI	process.	
	
The	 interface	 for	 the	 algorithm	 is	 very	 general,	 and	 the	 specific	 use	 case	 of	
interest	 is	 defined	 via	 three	 user	 provided	 callback	 procedures.	 The	 callback	
procedures	will	be	discussed	in	sections	0,	0	and	0.	
	
In	order	to	generalise	the	algorithm	to	perform	parallel	supermesh	calculations	
on	 meshes	 that	 are	 not	 perfectly	 aligned,	 the	 following	 algorithm	 was	
implemented:	

1. Communicate	 the	 axis-aligned	 bounding	 boxes	 (AABBs)	 of	 all	 mesh	 A	
partitions	and	all	mesh	B	partitions	using	all-to-all	communication;	

2. For	each	mesh	A	partition	whose	AABB	intersects	with	the	 local	mesh	B	
AABB:	

a. Identify	 local	 mesh	 B	 elements	 whose	 AABBs	 intersect	 with	 the	
AABB	of	the	mesh	A	partition;	

b. Obtain	 data	 associated	 with	 these	 elements,	 and	 communicate	
these	data	via	point-to-point	communication.	

3. Construct	 the	 intersection	 meshes	 for	 local	 mesh	 A	 and	 local	 mesh	 B	
elements,	and	perform	calculations	on	these	intersection	meshes;	

4. For	each	mesh	B	partition	whose	AABB	intersects	with	the	 local	mesh	A	
AABB:	

a. Unpack	data	communicated	in	step	2b;	
b. Construct	 the	 intersection	meshes	 for	 local	mesh	A	 and	 received	

mesh	B	 elements,	 and	perform	 calculations	 on	 these	 intersection	
meshes.	

4.4.1.1	Step	1	

The	initial	step	of	the	algorithm	calculates	the	axis-aligned	bounding	box	(AABB)	
of	 the	 local	meshes	 (A	 and	B).	Once	 the	 local	AABBs	have	been	 calculated,	 the	
library	 uses	 MPI	 all-to-all	 communication	 to	 distribute	 the	 bounding	 boxes	
across	the	whole	domain.	After	this	step	all	remaining	communication	is	point-
to-point.	Once	step	1	is	complete	all	MPI	processes	know	the	bounding	boxes	of	
all	mesh	partitions.	



4.4.1.2	Step	2	

Each	 process	 runs	 a	 test	 on	 the	 bounding	 boxes	 of	 each	 mesh	 A	 partition,	
communicated	in	step	1,	with	the	 local	mesh	B	partition.	 If	 the	bounding	boxes	
intersect	then	some	of	the	local	mesh	B	elements	may	intersect	with	some	mesh	
A	 elements	 on	 a	 different	 process.	 At	 this	 point	 one	 approach	 would	 be	 to	
communicate	all	local	mesh	B	data	to	the	MPI	process	which	holds	the	relevant	
mesh	 A	 partition.	 However,	 step	 2a	 optimises	 this	 process	 and	 reduces	 the	
amount	of	data	that	need	be	communicated.	
	
Similarly	 each	 process	 runs	 a	 test	 on	 the	 bounding	 boxes	 of	 each	 mesh	 B	
partition,	 communicated	 in	 step	 1,	 with	 the	 local	 mesh	 A	 partition.	 If	 the	
bounding	boxes	intersect	then	some	of	the	local	mesh	A	elements	may	intersect	
with	some	mesh	B	elements	stored	on	a	different	process.	It	is	noted	that	some	
data	will	be	received	from	this	process.	
4.4.1.3	Step	2a	

In	 this	 step	 each	 local	 mesh	 B	 element	 bounding	 box	 is	 tested	 against	 the	
bounding	 box	 of	 the	 mesh	 A	 partition	 identified	 in	 step	 2.	 The	 local	 mesh	 B	
elements	 which	 intersect	 with	 the	 bounding	 box	 of	 the	 mesh	 A	 partition	 are	
marked	for	sending.	At	this	point	it	is	not	certain	that	the	local	mesh	B	elements	
actually	 intersect	 with	 any	 mesh	 A	 partition	 elements	 of	 the	 other	 process.	
However,	 this	 step	 nevertheless	 reduces	 the	 amount	 of	 data	 packing	 and	MPI	
point-to-point	communication	required	in	the	following	steps.	
4.4.1.4	Step	2b	

In	this	step	the	local	mesh	B	elements	to	be	communicated	to	remote	processes	
are	known.	A	user	provided	 callback	 function	 is	 used	 to	 create	 a	packed	array	
containing	necessary	user	data.	libsupermesh	is	oblivious	to	the	amount	of	data	
and	the	associations	between	elements	and	data	values.	The	user	is	responsible	
for	providing	a	procedure	which	will	return	an	array	of	data	values	based	on	the	
local	mesh	B	vertices	and	elements	which	are	tagged	for	sending.	Once	the	data	
have	 been	 packed,	 libsupermesh	 creates	 a	 packed	 MPI	 message	 containing	
additional	meta-data.	The	packed	MPI	message	has	the	following	format:	

1. Number	of	elements	(MPI_INTEGER);	
2. Number	of	mesh	vertices	(MPI_INTEGER);	
3. Connectivity	of	mesh	vertices	(flat	array	of	MPI_INTEGER);	
4. Coordinates	of	mesh	vertices	(flat	array	of	MPI_DOUBLE_PRECISION);	
5. Size	of	user	supplied	data	(MPI_INTEGER);	
6. User	supplied	data	(MPI_BYTE).	

	
The	packed	MPI	message	is	sent	to	the	relevant	MPI	process	using	point-to-point	
communication.	
	
If	during	4.4.1.3	Step	2a	no	suitable	local	mesh	B	elements	are	identified,	an	MPI	
message	with	the	following	format	is	sent:	

1. Number	of	elements	(equal	to	0).	
	
The	receiver	will	not	be	aware	that	no	mesh	B	elements	actually	intersected	with	
the	 local	mesh	A	AABB.	Thus	 the	 receiver	will	 think	 that	a	message	 is	pending	



and	 it	 could	 dead-lock.	 Sending	 an	 MPI	 message	 which	 will	 indicate	 that	 no	
elements	intersect	avoids	this.	
4.4.1.5	Step	3	

This	step	handles	the	case	where	elements	in	the	local	mesh	A	and	local	mesh	B	
intersect.	 If	 there	 is	 a	 local	 intersection,	 then	 the	 intersection	 meshes	 can	 be	
constructed	and	all	relevant	calculations	can	be	performed	using	a	user	provided	
callback	function	(see	step	4b).	
4.4.1.6	Step	4	

The	 receiver	 knows	 if	 the	 local	 mesh	 A	 AABB	 intersects	 with	 the	 mesh	 B	
partition.	Thus,	it	is	known	whether	the	process	will	receive	data	from	a	remote	
MPI	process.	Furthermore,	it	is	known	which	MPI	process	will	send	the	message.	
	
If	the	bounding	boxes	intersect,	an	MPI	Probe	call	is	initiated.	An	MPI	Probe	must	
be	used	because	the	size	of	the	incoming	MPI	message	is	not	known.	
4.4.1.7	Step	4a	

In	this	step	an	MPI	packed	message	containing	the	remote	mesh	B	partition	data	
is	received.	The	format	of	the	message	is	the	same	as	in	4.4.1.4	Step	2b.	If	the	first	
MPI_INTEGER	 is	 equal	 to	 0,	 then	 the	 message	 is	 discarded	 and	 remaining	
probing	is	performed.	
	
If	an	MPI	message	is	received	where	the	first	MPI_INTEGER	is	not	equal	to	0,	the	
message	 is	 unpacked	 using	 MPI_UNPACK.	 Memory	 is	 allocated	 to	 hold	 the	
communicated	user	provided	data,	which	 is	 itself	unpacked	by	a	user	specified	
callback	 function.	 The	 unpack	 user	 data	 is	 stored	 in	 user	 controlled	 memory	
space.	
4.4.1.8	Step	4b	

In	the	final	step	intersection	meshes	for	the	communicated	mesh	B	elements	and	
the	 local	 mesh	 A	 elements	 are	 constructed.	 The	 candidate	 intersection	
identification	 is	 performed	 using	 the	 libspatialindex	 R*-tree	 algorithm.	 The	
efficient	advancing	front	based	spatial	searching	algorithm	cannot	be	used	as	it	
cannot	be	guaranteed	that	the	considered	meshes	satisfy	the	properties	required	
by	 this	 algorithm.	 Furthermore,	 the	 quadtree	 (2D)	 and	 octree	 (3D)	 algorithms	
were	not	used	because	they	were	completed	late	in	the	project.	libsupermesh	is	
unaware	of	 the	 type	of	 calculations	 that	 the	user	wants	 to	perform.	A	 callback	
function	 performs	 the	 calculations	 and,	 if	 required,	 stores	 the	 results	 in	 user	
controlled	memory	space.	
4.4.1.9	pack_data_b	callback		procedure	

This	procedure	is	provided	by	the	user	and	is	called	in	4.4.1.4	Step	2b	(section	0).	
The	procedure	takes	as	input	two	integer	arrays	which	correspond	to	the	mesh	B	
vertices	and	elements	that	will	be	communicated.	The	output	of	this	procedure	is	
a	 one	 dimensional	 array	with	 a	 contiguous	memory	 region	which	 includes	 all	
data	which	will	 later	be	unpacked	by	the	unpack_data_b	procedure	(see	section	
0).	



4.4.1.10	unpack_data_b	callback	procedure	

This	procedure	is	provided	by	the	user	and	is	called	in	4.4.1.7	Step	4a	(section	0).	
This	procedure	takes	as	input	two	integers	which	correspond	to	the	number	of	
communicated	mesh	B	vertices	and	element,	and	a	one	dimensional	array	with	a	
contiguous	memory	region	which	includes	mesh	B	user	data,	previously	packed	
on	a	different	process.	Unpacked	data	is	stored	in	user	controlled	memory	space.	
4.4.1.11	intersection_calculation	callback	procedure	

This	procedure	is	provided	by	the	user	and	is	called	in	4.4.1.5	Step	3	(section	0)	
and	4.4.1.8	Step	4b	(section	0).	This	takes	as	input	several	arguments:	

• Element	A	vertex	coordinates.	
• Element	B	vertex	coordinates.	
• Intersection	mesh	C	vertex	coordinates.	
• Mesh	B	vertices	associated	with	element	B	in	the	local	or	received	mesh	B	
• Index	of	element	A	in	the	local	mesh	A.	
• Index	of	element	B	in	the	local	or	received	mesh	B	
• Local	(true	or	false),	whether	4.4.1.5	Step	3	(section	0)	[if	true]	or	4.4.1.8	

Step	4b	(section	0)	[if	false]	is	being	performed.	
	

The	callback	procedure	performs	calculations	on	each	intersection	mesh,	storing	
the	results	in	user	controlled	memory	space.	
Example	
In	this	example	two	meshes	(A	and	B)	are	going	to	be	used.	The	elements	of	each	
mesh	have	been	painted	according	to	the	MPI	process	that	owns	them.	The	blue	
elements	are	owned	by	MPI	process	1,	the	green	elements	by	MPI	process	2,	the	
pink	elements	by	MPI	process	3	and	the	red	elements	by	MPI	process	4.	The	full	
meshes	are	shown	in	Figure	3:	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	3	Complete	Meshes	

Each	MPI	 process	 has	 an	 incomplete	 picture	 of	 the	 two	meshes.	 For	 example,	
Figure	4	shows	the	view	of	both	meshes	by	MPI	process	1:	
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Figure	4	MPI	process	1	View	

For	 this	 example	 the	 local	 MPI	 process	 is	 MPI	 process	 1	 and	 the	 remote	MPI	
processes	are	MPI	process	2,	3	and	4.	
	
The	first	step	of	the	algorithm	is	to	compute	and	communicate	the	axis-aligned	
bounding	boxes	(AABBs)	of	all	mesh	A	partitions	and	all	mesh	B	partitions	using	
all-to-all	 communication.	 Figure	 5	 shows	 the	 view	 of	 each	 MPI	 process	 after	
computing	the	AABBs.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	5	View	of	each	MPI	process	

	
The	 next	 step	 is	 to	 communicate	 the	 AABBs	 using	 all-to-all	 communications.	
Figure	 6	 shows	 the	 view	 of	 MPI	 process	 1	 (local)	 after	 the	 all-to-all	
communication;	whereas,	Figure	7	shows	the	view	of	the	remote	MPI	processes.	
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Figure	6	View	of	local	process	after	all-to-all	

Once	MPI	process	1	receives	the	elements	and	data	from	the	remote	processes	it	
can	 construct	 the	 intersection	 meshes	 for	 local	 mesh	 A	 and	 received	 mesh	 B	
elements.	Some	of	the	received	mesh	B	elements	will	not	intersect	(for	example	
most	of	MPI	process	2	mesh	B	elements	do	not	intersect).	However,	at	the	end	of	
this	 step	 MPI	 process	 1	 will	 have	 a	 complete	 view	 of	 the	 received	 mesh	 B	
elements	 that	 intersect	with	 the	 local	mesh	 A	 elements.	 Furthermore,	 all	 data	
associated	with	 the	 remote	mesh	B	 elements	 have	been	 communicated	 to	MPI	
process	1.	Thus	MPI	process	1	 can	not	only	 construct	 the	 intersection	meshes;	
MPI	process	1	can	also	use	the	intersection	mesh	and	perform	calculations.	
	
	
	
	
	
	
	
	
	
	
	
	
	
Figure	7	View	of	remote	MPI	processes	

Overlapping	of	computation	and	communication	
The	 algorithm	 allows	 the	 overlapping	 of	 computation	 and	 communication.	
4.4.1.5	 Step	3	 computes	 the	 local	 supermesh	using	elements,	 vertices	 and	data	
that	 are	 available	 to	 the	MPI	 process.	 Not	 all	 MPI	 processes	 can	 perform	 this	
step.	 However,	 an	 MPI	 process	 that	 performs	 calculations	 in	 this	 step	 could	
perform	 the	 computation	 whilst	 the	 MPI	 library	 sends	 data	 to	 other	 MPI	
processes.	 Both	 approaches	were	 implemented.	 However,	 during	 performance	
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testing	an	increase	in	runtime	was	observed	when	using	overlapping.	Therefore,	
this	is	available,	but	disabled	by	default.	
Parallel	performance	
Several	 benchmarks	 were	 run	 in	 order	 to	 measure	 the	 performance	 of	 the	
libsupermesh	library.	The	2D	and	3D	benchmarks	take	as	inputs	two	meshes	(A	
and	B)	and	construct	an	intersection	mesh.	For	the	2D	benchmarks	mesh	A	is	a	
triangle	 shaped	mesh,	 whereas	mesh	 B	 is	 a	 square	 shaped	mesh.	 The	meshes	
were	 generated	 using	 Gmsh	 [11].	 Meshes	 A	 and	 B	 each	 consist	 of	 triangle	
elements	 with	 quasi-uniform	 resolution.	 Several	 benchmarks	 were	 run;	
however,	only	two	sets	of	results	(small	and	large)	are	presented:	

• 33,065,204	elements	for	mesh	A	and	29,399,556	elements	for	mesh	B;	
• 297,512,852	elements	for	mesh	A	and	264,549,836	elements	for	mesh	B.	

	
The	3D	benchmarks	use	a	pyramid	shaped	mesh	(as	mesh	A)	and	a	cubed	shaped	
mesh	(as	mesh	B).	The	meshes	were	generated	using	Gmsh	[11].	Meshes	A	and	B	
use	 tetrahedral	 elements	 with	 quasi-uniform	 resolution.	 Several	 benchmarks	
were	run;	however,	only	two	sets	of	results	(small	and	large)	are	presented:	

• 33,077,698	elements	for	mesh	A	and	27,301,039	elements	for	mesh	B;	
• 141,873,169	elements	for	mesh	A	and	128,459,529	elements	for	mesh	B.	

	
The	 first	 benchmark	 computes	 the	 area	 (2D)	 or	 volume	 (3D)	 of	 the	 mesh	
intersection	region.	Since	the	sizes	and	shapes	of	the	two	meshes	are	known,	the	
area	 or	 volume	 of	 their	 intersection	 can	 be	 calculated,	 and	 used	 to	 verify	
correctness	of	the	result	using	libsupermesh.	
	
The	second	benchmark	computes	the	 intersection	area	or	volume,	and	also	the	
L2	 inner	 product	 of	 two	 piecewise	 linear	 continuous	 functions	 defined	 using	 a	
standard	P1	Lagrange	basis,	computed	using	three	point	degree	2	quadrature	in	
2D	[12],	and	four	point	degree	2	quadrature	in		3D	[13	section	8.8,14].	
	
The	third	benchmark,	performed	only	in	2D,	computes	the	intersection	area,	and	
also	 the	 L2	 inner	 product	 of	 two	 piecewise	 quadratic	 continuous	 functions	
defined	using	a	standard	P2	Lagrange	basis,	computed	using	a	local	hard	coded	
P2	element	mass	matrix.	
	
Each	benchmark	was	executed	5	times	and	the	average	of	the	last	4	runs	is	used	
(ignoring	 the	 first	 run).	 The	 following	 sections	 assess	 the	 strong	 scaling	of	 the	
libsupermesh	 library.	 The	 following	 git	 commit	 version	 was	 used:	
879f126b7a64a89463f2efd8caf013eea096a770.	This	version	is	not	the	same	as	
the	released	version;	however,	no	significant	changes	in	the	results	are	expected.	
The	code	was	compiled	using	the	GNU	compiler	(ver.	5.1.0)	on	ARCHER.	
	
Some	of	the	small	cases	were	run	on	the	Test	and	Development	System	(TDS);	an	
infrastructure	which	 includes	 the	 same	hardware	and	 software	 components	as	
the	 main	 system.	 TDS	 nodes	 have	 the	 same	 processor	 and	 memory	
configurations	as	are	used	in	the	main	system;	however,	the	network	topology	is	
smaller.	



4.4.2.1	2D	–	small	mesh	

Each	benchmark	was	 run	 first	 in	 serial	 and	 then	 in	parallel.	During	 testing	 the	
I/O	 performance	 issue	 discussed	 in	 section	 4.3	 was	 identified.	 The	
libspatialindex	interface	was	modified	so	as	to	avoid	this	and	a	4x	performance	
improvement	 was	 observed	 for	 the	 small	 benchmark	 set	 (runtime	 reduction	
from	6,333	seconds	to	1,019	seconds),	in	serial.	
	
The	Fluidity	“fldecomp”	tool	was	used	to	partition	the	meshes.	Table	1	shows	the	
distribution	of	elements	of	the	two	meshes.		
	
Several	 smaller	 benchmarks	 were	 run	 in	 order	 to	 fine-tune	 the	 parallel	 job	
launcher	(aprun)	options	and	it	was	noticed	that	the	code	ran	faster	if	the	nodes	
were	 underpopulated.	 The	 benchmarks	were	 thus	 run	 using	 20	 cores	 on	 each	
ARCHER	 node.	 Under-populating	 is	 a	 common	 practice	 on	 HPC	 systems.	
Furthermore,	some	test	cases	required	a	large	amount	of	RAM.	Under-populating	
nodes	allows	each	MPI	process	to	use	more	RAM.	
	
Procs	 Min	 Max	 Median	
	 Triangle	 Square	 Triangle	 Square	 Triangle	 Square	
1	 33,065,204	 29,399,556	 33,065,204	 29,399,556	 33,065,204	 29,399,556	
2	 16,546,182	 14,712,561	 16,548,622	 14,712,858	 16,547,402	 14,712,710	
5	 6,620,669	 5,891,449	 6,637,897	 5,900,586	 6,624,084	 5,893,728	
10	 3,310,560	 2,946,974	 3,325,951	 2,958,106	 3,319,551	 2,950,357	
20	 1,656,071	 1,474,267	 1,666,012	 1,483,021	 1,662,305	 1,478,769	
40	 828,451	 736,979	 836,783	 746,447	 833,899	 742,302	
100	 331,787	 295,708	 337,877	 302,535	 335,691	 298,739	
200	 165,241	 147,660	 172,632	 153,455	 168,987	 150,398	
400	 82,833	 73,510	 87,678	 78,295	 85,163	 75,954	
1,000	 32,764	 29,345	 36,009	 32,077	 34,685	 30,921	
2,000	 16,769	 14,720	 18,519	 16,564	 17,700	 15,790	

Table	1	Distribution	of	elements	for	the	2D	small	mesh	benchmarks	

The	first	2D	benchmark	computes	the	area	of	the	supermesh.	Table	2	and	Figure	
8	 show	 the	 runtime	 of	 the	 serial	 and	 parallel	 runs.	 All	 axes	 of	 Figure	 8	 are	 in	
logarithmic	 scale	 and	 the	 ideal	 speedup	 line	 is	 used	 as	 a	 reference	point.	 Each	
benchmark	verifies	that	the	calculated	area	is	correct.	The	calculated	area	varies	
between	 49.9999999999911	 and	 50.0000000000057,	 with	 an	 exact	 analytical	
value	equal	to	50.	This	variance	is	acceptable	and	it	is	attributed	to	floating	point	
errors.	
	
	
	
	
	
	
	
	
	
	
	
	



Table	2	MPI	all-to-all	time	for	the	2D	small	meshes,	intersection	area	calculation	benchmark	

	

	
Figure	8	Runtime	and	speedup	for	the	2D	small	meshes,	intersection	area	calculation	

The	drop	in	performance	when	using	1,000	MPI	processes	is	caused	by	the	MPI	
all-to-all	 communication.	 Table	 2	 shows	 the	 duration	 of	 the	 MPI	 all-to-all	
communication	step.	When	we	use	2	MPI	processes	the	MPI	all-to-all	step	takes	a	
long	 time,	 due	 to	 the	 large	 amount	 of	 data	 that	 is	 sent	 across	 the	 network.	
However,	as	the	number	of	MPI	processes	increases	the	cost	of	the	MPI	all-to-all	
call	 is	 reduced	 and	 it	 plateaus,	 thanks	 to	 the	MPI	 implementation	on	ARCHER.	
The	cost	of	the	call	(in	seconds)	reduces	and	stabilises	at	around	1/3	of	a	second.	
However,	when	 1,000	MPI	 processes	 are	 used	 the	 cost	 of	 call	 increases	 by	 an	
order	of	magnitude.	This	trend	does	not	continue	when	the	number	of	processes	
is	increased	to	2,000,	as	the	call	takes	0.4	seconds	to	complete.	
	
Each	ARCHER	compute	node	has	24	Intel	Xeon	CPUs.	4	ARCHER	compute	nodes	
are	 bundled	 together	 forming	 an	 ARCHER	 compute	 blade	 (or	 96	 CPUs).	 16	
ARCHER	compute	blades	 (or	64	ARCHER	compute	nodes;	or	1,536	CPUs)	 form	
an	 ARCHER	 chassis.	 Network	 communication	 (both	 latency	 and	 bandwidth)	
inside	 a	 compute	 blade	 is	 extremely	 fast.	 Communication	 between	 different	
chassis	incurs	a	latency	hit	(since	messages	have	to	travel	longer	distances).	The	
scheduler	tries	to	allocate	compute	nodes	which	are	located	in	the	same	compute	
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Procs	 Runtime		
(in	seconds)	

Speedup	 Parallel	
Efficiency	

MPI	 All-to-All	
(seconds)	

1	 407.6	 1.00	 100.0%	 	
2	 298.4	 1.37	 68.3%	 4.24785	
5	 195.0	 2.09	 41.8%	 0.26500	
10	 97.6	 4.17	 41.7%	 0.42673	
20	 45.2	 9.02	 45.1%	 0.23855	
40	 23.7	 17.21	 43.0%	 0.34014	
100	 8.5	 47.95	 47.9%	 0.34432	
200	 4.0	 102.15	 51.1%	 0.20742	
400	 2.0	 202.42	 50.6%	 0.25765	
1,000	 4.2	 96.40	 9.6%	 5.02010	
2,000	 0.7	 551.36	 27.6%	 0.44537	



blade	or	chassis.	However,	when	50	ARCHER	compute	nodes	are	requested	the	
scheduler	 might	 not	 be	 able	 to	 accommodate	 the	 request	 on	 one	 chassis.	
Therefore,	 the	 scheduler	 allocates	 a	 job	 on	 several	 chassis;	 network	
communication	takes	a	hit.	
	
Overall,	the	runtime	of	constructing	and	using	the	intersection	mesh	is	reduced	
from	 407	 seconds	 to	 less	 than	 a	 second	 (using	 2,000	 MPI	 processes	 or	 100	
ARCHER	nodes).	The	runtime	 includes	all	overheads	and	MPI	communications.	
When	using	2,000	MPI	processes	the	library	spends	0.4	seconds	communicating	
using	 MPI	 all-to-all;	 0.05	 seconds	 sending	 and	 receiving	 data	 from	 other	 MPI	
processes;	0.15	seconds	computing	and	using	the	local	mesh	using	local	mesh	B	
data	and	0.15	seconds	computing	and	using	the	local	mesh	using	remote	mesh	B	
data.	 The	 parallel	 efficiency	 of	 the	 code	 starts	 at	 68%	 when	 using	 2	 MPI	
processes	and	drops	to	27%	when	2,000	MPI	processes	are	used.	
	
Figure	9	shows	the	runtime	improvement	of	the	P1	L2	inner	product	benchmark	
using	 the	 small	 data	 set.	 The	minimum	 number	 of	MPI	 processes	 used	 in	 this	
benchmark	is	2.	All	axes	of	Figure	9	use	a	logarithmic	scale	and	the	ideal	speedup	
line	is	used	as	a	reference	point.	Each	benchmark	verifies	that	the	calculated	area	
and	integral	are	correct.	The	calculated	area	varies	between	49.9999999999951	
and	 50.0000000000002,	 with	 an	 exact	 analytical	 value	 equal	 to	 50.	 	 The	
calculated	 L2	 inner	 product	 varies	 between	 833.333333333161	 and	
833.333333333338,	with	an	exact	analytical	 result	equal	 to	833	and	one	 third.	
This	variance	is	acceptable	and	is	attributed	to	floating	point	errors.	
	
Using	 libsupermesh	 the	 time	 taken	 by	 the	 P1	 L2	 inner	 product	 benchmark	 is	
reduced	 from	433	seconds	 to	1.5	seconds	 (when	using	2,000	MPI	processes	or	
100	ARCHER	nodes).	The	parallel	efficiency	of	the	code	starts	at	85%	when	using	
5	MPI	processes	and	drops	to	28%	when	we	use	2,000	MPI	processes.	

	
Figure	9	Runtime	and	speedup	for	the	2D	small	meshes,	intersection	area	and	inner	product	
calculation	

4.4.2.2	2D	–	large	mesh	

Table	3	shows	the	distribution	of	elements	of	the	two	meshes	for	the	larger	mesh	
case.	The	benchmarks	are	run	using	20	cores	on	each	ARCHER	node.	Thus,	500	
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nodes	were	used	for	the	10,000	MPI	process	runs	and	10	nodes	for	the	200	MPI	
process	runs.	
	
Procs	 Min	 Max	 Median	
	 Triangle	 Square	 Triangle	 Square	 Triangle	 Square	
1	 297,512,852	 264,549,836	 297,512,852	 264,549,836	 297,512,852	 264,549,836	
2	 148,800,446	 132,315,341	 148,802,495	 132,315,656	 148,801,471	 132,315,499	
5	 59,526,138	 52,940,948	 59,562,613	 52,979,531	 59,539,246	 52,953,158	
10	 29,761,499	 26,476,139	 29,809,756	 26,512,300	 29,789,443	 26,494,191	
20	 14,884,658	 13,241,816	 14,917,449	 13,268,056	 14,904,219	 13,254,306	
40	 7,442,349	 6,623,682	 7,470,168	 6,647,800	 7,459,816	 6,636,179	
100	 2,977,648	 2,648,668	 2,996,469	 2,667,550	 2,990,197	 2,658,916	
200	 1,489,554	 1,325,830	 1,502,729	 1,337,397	 1,499,048	 1,333,618	
400	 744,088	 661,842	 756,911	 677,183	 751,834	 668,137	
1,000	 296,622	 263,553	 307,173	 275,048	 302,468	 269,263	
2,000	 147,800	 131,524	 156,562	 139,225	 152,280	 135,595	
4,000	 73,682	 65,235	 79,325	 70,640	 76,851	 68,480	
6,000	 49,164	 43,970	 53,587	 47,597	 51,609	 46,010	
8,000	 36,841	 32,825	 40,398	 36,004	 38,950	 34,726	
10,000	 29,653	 26,600	 32,509	 29,018	 31,328	 27,943	

Table	3	Distribution	of	elements	for	the	2D	large	mesh	benchmark	

The	 runtime	 and	 speedup	 for	 the	 intersection	 area	 calculation	 are	 shown	 in	
figure	5.	As	 long	as	 the	MPI	processes	each	have	several	 thousand	elements	 to	
process	 the	 benchmark	 scales.	 However,	 as	 the	 number	 of	 MPI	 processes	 is	
increased	 the	 number	 of	 elements	 per	 process	 decreases	 and	 the	 benchmark	
starts	to	plateau.	
	
The	benchmark	scales	up	to	8,000	cores.	The	runtime	of	constructing	and	using	
the	 supermesh	 is	 reduced	 from	 6,980	 seconds	 to	 1.63	 seconds	 (when	 using	
10,000	MPI	 processes	 or	 500	ARCHER	nodes)	 or	 to	 3.85	 seconds	 (when	using	
2,000	MPI	 processes	 or	 100	 ARCHER	 nodes).	 Parallel	 efficiency	 starts	 at	 75%	
and	drops	to	43%	when	10,000	MPI	processes	are	used.	
	

	
Figure	10	Runtime	and	speedup	for	the	2D	large	meshes,	intersection	area	calculation		

4.4.2.3	3D	–	small	mesh	

As	in	the	section	4.4.2.1	2D	case,	each	benchmark	is	run	first	in	serial	and	then	in	
parallel.	The	Fluidity	tool	“fldecomp”	was	used	to	partition	the	meshes.	Table	4	
shows	the	distribution	of	elements	of	the	two	meshes.	
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	 Pyramid	 Cube	 Pyramid	 Cube	 Pyramid	 Cube	
1	 33,077,698	 27,301,039	 33,077,698	 27,301,039	 33,077,698	 27,301,039	
2	 16,863,659	 13,928,823	 16,893,894	 13,953,675	 16,878,777	 13,941,249	
5	 6,856,565	 5,691,975	 6,950,498	 5,803,237	 6,879,114	 5,718,921	
10	 3,399,029	 2,888,987	 3,667,456	 3,049,078	 3,521,839	 2,912,725	
20	 1,685,080	 1,437,955	 1,932,586	 1,650,304	 1,843,435	 1,521,248	
40	 839,041	 722,418	 1,050,621	 875,655	 951,893	 790,728	
100	 340,607	 287,097	 457,559	 379,372	 405,077	 339,380	
200	 170,507	 145,516	 241,819	 203,575	 213,348	 180,828	
400	 84,386	 73,920	 132,589	 109,738	 116,141	 97,879	
1,000	 33,782	 30,340	 60,833	 51,066	 53,518	 45,647	
2,000	 17,522	 15,632	 34,235	 29,214	 30,293	 25,883	

Table	4	Distribution	of	elements	for	the	3D	small	mesh	benchmarks	

The	first	3D	benchmark	computes	the	volume	of	the	supermesh.	Figure	11	shows	
the	 runtime	 of	 the	 serial	 and	 parallel	 runs.	 All	 axes	 of	 Figure	 11	 are	 in	
logarithmic	 scale	 and	 the	 ideal	 speedup	 line	 is	 used	 as	 a	 reference	point.	 Each	
benchmark	verifies	that	the	calculated	volume	is	correct.	The	calculated	volume	
varies	 between	 333.333333332263	 and	 333.333333325764,	 with	 an	 exact	
analytical	 value	 of	 333	 and	 one	 third.	 This	 variance	 is	 acceptable	 and	 is	
attributed	to	floating	point	errors.	
	
Overall,	 the	 runtime	 of	 constructing	 and	using	 the	 supermesh	 is	 reduced	 from	
1,695	seconds	to	4.4	seconds	(using	2,000	MPI	processes	or	100	ARCHER	nodes).	
The	runtime	includes	all	overheads	and	MPI	communications.	When	using	2,000	
MPI	processes	 the	 library	 spends	1.4	 seconds	 communicating	using	MPI	all-to-
all;	 0.15	 seconds	 sending	 and	 receiving	 data	 from	 other	 MPI	 processes;	 0.55	
seconds	computing	 the	 local	mesh	using	 local	data,	and	0.9	seconds	computing	
the	 local	mesh	 using	 remote	 data.	 The	 parallel	 efficiency	 of	 the	 code	 starts	 at	
68%	when	using	2	MPI	processes	and	drops	to	22%	when	2,000	MPI	processes	
are	used.	
	

	
	
Figure	11	Runtime	and	speedup	for	the	3D	small	meshes,	intersection	volume	calculation	

Figure	 12	 shows	 the	 runtime	 and	 speedup	 of	 the	 3D	 P1	 L2	 inner	 product	
benchmark	using	the	small	mesh	set.	
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Figure	12	Runtime	and	speedup	for	the	3D	small	meshes,	intersection	volume	and	inner	product	
calculation		

The	minimum	number	of	MPI	processes	used	 in	 this	benchmark	 is	2.	 It	 can	be	
seen	that	the	code	scales	up	to	2,000	MPI	processes.	The	parallel	efficiency	starts	
at	 55%	 for	 5	MPI	 processes	 and	 drops	 to	 19%	 for	 2,000	MPI	 processes.	 Total	
runtime	 is	 reduced	 from	 2,082	 seconds	 when	 using	 2	 MPI	 processes	 to	 10.7	
seconds	 for	 2,000	MPI	 processes.	 The	 calculated	 value	 for	 the	 3D	 P1	 L2	 inner	
ranged	 between	 12499.9999999224	 and	 12499.9999996795,	 with	 an	 exact	
analytical	value	of	12500.	This	variance	is	acceptable	and	is	attributed	to	floating	
point	errors.	
4.4.2.4	3D	–	large	mesh	

Table	5	shows	the	distribution	of	elements	for	the	two	meshes	used	in	the	larger	
3D	case.		
	
Procs	 Min	 Max	 Median	
	 Pyramid	 Cube	 Pyramid	 Cube	 Pyramid	 Cube	
1	 141,873,169	 128,459,529	 141,873,169	 128,459,529	 141,873,169	 128,459,529	
2	 71,762,140	 65,084,706	 71,863,664	 65,091,104	 71,812,902	 65,087,905	
5	 29,065,505	 26,415,340	 29,115,706	 26,609,193	 29,078,719	 26,442,965	
10	 14,474,160	 13,302,577	 15,220,962	 13,860,999	 14,778,191	 13,365,003	
20	 7,227,813	 6,661,998	 7,871,941	 7,188,064	 7,581,408	 6,869,904	
40	 3,623,315	 3,357,265	 4,117,087	 3,742,773	 3,879,448	 3,508,224	
100	 1,442,679	 1,323,823	 1,742,331	 1,579,347	 1,615,741	 1,470,771	
200	 720,006	 673,832	 914,791	 838,839	 839,927	 766,798	
400	 349,144	 333,555	 484,535	 441,758	 441,138	 401,968	
1,000	 143,653	 134,480	 210,185	 191,851	 193,496	 177,947	
2,000	 72,545	 67,484	 116,447	 105,620	 105,155	 96,491	
4,000	 32,718	 34,066	 63,090	 58,524	 57,733	 53,059	
6,000	 23,544	 23,648	 45,902	 41,592	 40,957	 37,627	
8,000	 16,822	 18,486	 37,066	 34,415	 32,194	 29,640	
10,000	 13,901	 14,403	 30,493	 27,837	 26,744	 24,645	

Table	5	Distribution	of	elements	in	the	3D	large	mesh	benchmarks	

The	first	3D	benchmark	computes	the	volume	of	the	supermesh.	Figure	13	shows	
the	 runtime	 of	 the	 serial	 and	 parallel	 runs.	 All	 axes	 of	 Figure	 13	 are	 in	
logarithmic	 scale	 and	 the	 ideal	 speedup	 line	 is	 used	 as	 a	 reference	point.	 Each	
benchmark	verifies	that	the	calculated	volume	is	correct.	The	calculated	volume	
varies	 between	 333.333333304712	 and	 333.333333333264,	 with	 an	 exact	
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analytical	 value	 equal	 to	 333	 and	 one	 third.	 This	 variance	 is	 acceptable	 and	 is	
attributed	to	floating	point	errors.	
	

	
Figure	13	Runtime	and	speedup	for	the	3D	large	meshes,	intersection	volume	calculation	

It	can	be	seen	that	the	3D	benchmark	scales	as	the	number	of	MPI	processes	is	
increased.	Runtime	is	reduced	from	12,978	seconds	to	4.3	seconds	(when	using	
10,000	MPI	processes	or	500	ARCHER	nodes).	Parallel	efficiency	starts	at	78%	
and	it	drops	to	30%	when	10,000	MPI	processes	are	used.	
	
Finally,	Figure	14	shows	the	runtime	and	speedup	of	the	3D	P1	L2	inner	product	
benchmark.	The	minimum	number	of	MPI	processes	used	in	this	benchmark	is	2.	
	
The	3D	P1	L2	inner	product	benchmark	 scales	well.	 Parallel	 efficiency	 starts	 at	
48%	and	drops	to	26%	when	10,000	MPI	processes	are	used.	

	
Figure	14	Runtime	and	speedup	for	the	3D	large	meshes,	intersection	volume	and	inner	product	
calculation		

	
4.5 Scientific	Impact	and	Dissemination	
libsupermesh	has	been	released	under	the	open	source	LGPL	version	2.1	license	
[1].	The	library	includes	a	comprehensive	set	of	regression	tests,	and	a	49	page	
manual	 documenting	 the	primary	 features.	 The	 open	 source	 license,	 combined	
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with	 the	 extensive	 documentation,	will	 facilitate	 adoption	 in	 new	 and	 existing	
codes.	
	
libsupermesh	 has	 been	 integrated	with	 Fluidity	 [2],	 and	 this	 is	 expected	 to	 be	
incorporated	into	the	main	Fluidity	source	code	repository.	
	
4.6 Summary	and	Conclusions	
This	 project	 has	 successfully	 produced	 a	 serial	 general	 purpose	 supermeshing	
library	 for	 non-matching	 unstructured	meshes.	 Furthermore,	 an	 algorithm	 for	
parallel	 supermeshing,	 with	 non-matching	 domain	 decompositions,	 has	 been	
implemented	 in	 the	 library.	 The	 software	 is	 available	 under	 an	 open	 source	
license	 through	 public	 repositories.	 The	 library	 has	 been	 optimised	 and	
benchmarked.	Benchmarking	showed	 that	 it	 can	scale	up	 to	10,000	cores	 for	a	
one	hundred	million	degree	of	 freedom	problem	with	acceptable	performance.	
Use	of	the	standalone	library	has	been	integrated	into	Fluidity.	
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