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Abstract

This report presents new software developments implemented in the FEniCS/DOLFIN li-
braries to support efficient block preconditioning for linear systems, and the assembly of discon-
tinuous Galerkin methods in parallel. For block preconditioning, support for the PETSc MatNest
framework has been implemented. This provides memory savings of a factor of more than three
over the previous implementation, as well as reduced run times. For discontinuous Galerkin
methods, the DOLFIN distributed mesh data structure has been extended to allow ghost/halo
layers of cells. These layers are necessary to compute, on process boundaries, the numerical
fluxes that characterise discontinuous Galerkin methods. During the development of the above
functionality, a number of other performance improvements (in memory and run time) have been
made, and some new platform-independent profiling tools have been added to DOLFIN. These
are detailed in this report. Performance data for the newly developed functionality on ARCHER
are reported, and show very good scaling over a large range of process/core counts.

The primary objectives of this project have been achieved, and the developed code is publicly
available in the FEniCS Project development repositories. The functionality will be included in
future releases of the FEniCS Project libraries. Developments from this project have already
been used in EPSRC and NERC funded projects, as well as being made available through third-
party tools that build on FEniCS.
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1 Introduction

This project developed enhancements to the open source FEniCS/DOLFIN [3] library to extend
its functionality for multi-physics/multi-field simulations on parallel computers. The main topics
addressed in the project were: (a) memory efficient block preconditioning of linear systems via
PETSc; and (b) support for overlapping domain and discontinuous Galerkin methods in parallel.
This report summarises the new developments and provides performance data on ARCHER.

1.1 Background

The FEniCS Project allows users to express partial differential equations (PDEs) in a concise
mathematical form, which is then compiled into generated code for finite element analysis by a
‘form compiler’. This has the advantage of freeing users from writing low-level code and enables
them to quickly develop complex models. Special optimisations can be automatically applied in the
code generation phase.

As model sizes increase, users inevitably need to run on larger machines, and ultimately large
distributed memory High Performance Computing (HPC) systems, such as ARCHER. The FEniCS
problem solving environment, DOLFIN, has for some years supported distributed memory parallel
simulation. However, some important functionalities that have recently been in high demand from
users were not supported (efficiently) in parallel, namely discontinuous Galerkin methods and block
preconditioning.

1.2 Scope

In this report, we first consider multi-field problems, such as Stokes’ equations, which yield matrices
with a block structure. Often the blocks in such equations may be duplicated, or empty. When
solving with iterative solvers (almost always the case for large problems in parallel), the precon-
ditioner may also share elements with the operator matrix, and memory can be saved by sharing
matrix blocks. The second main topic addresses discontinuous Galerkin (DG) methods. DG meth-
ods involve integration over cell facets, and require data from cells on either side of a facet. In
parallel, this requires a layer of ghost cells on process boundaries. Support for this has been added,
and it is now possible to use DG methods in parallel. During the course of the code development,
numerous performance improvements were made based on performance profiling. Performance of
the new functionality is supported by performance data on ARCHER.

1.3 Objectives

The primary objectives of the project were to:

1. Provide support in DOLFIN for the efficient application of block preconditioners via PETSc.

2. Provide support in DOLFIN for the assembly of discontinuous Galerkin matrix operators and
vectors by extending the DOLFIN distributed mesh with a ghost/halo layer.

3. Apply generic optimisations as as result of the profiling performed in this work.

The main objectives of this work are the provision of new functionality rather than optimising
existing code. Hence, the performance testing focuses on parallel scaling rather than comparison
with old implementations.
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1.4 Libraries

The FEniCS libraries (http://fenicsproject.org) are available under open source licenses and
are developed publicly at https://bitbucket.org/fenics-project/. This work made extensive
use of PETSc [4, 5], which is hosted at https://bitbucket.org/petsc/petsc. We use the devel-
opment version of PETSc in all tests.

2 Parallel block preconditioning (WP1)

We summarise in this section the block preconditioning support that has been developed. To
demonstrate the approach, we use Stokes’ equations as a canonical example. As equation-specific
code is generated in FEniCS, users can easily apply the developed code to their own multi-field
equations. The matrix block structure supports m×m blocks.

The Stokes’ equations read:

−∇2u +∇p = f,(1)

∇ · u = 0,(2)

where u is the velocity field, p is the pressure field and f is the prescribed body force. Translating
the equations into a weak form and using a finite element basis leads to a linear system of algebraic
equations, which may be represented as a block matrix:

(3)

[
A00 A01

A10 0

]
︸ ︷︷ ︸

A

[
u
p

]
=

[
f
0

]
.

For a problem with n degrees-of-freedom, the matrix A will have dimensions n× n.
For large problems, it is necessary to use preconditioned iterative methods to solve the above

system. For Stokes’ equations, a simple yet optimal preconditioner P has a block diagonal structure,

(4) P =

[
A00 0
0 M

]
,

where M is the pressure mass matrix. The iterative solver then solves the modified problem

(5)

[
A00 0
0 M

]−1 [
A00 A01

A10 0

][
u
p

]
=

[
A00 0
0 M

]−1 [
f
0

]
.

A multigrid method applied to each block of P to approximate P−1 is known to be optimal, which
in turn leads to a method with (close to) O(n) cost, where n is the number of degrees-of-freedom.

For efficient computation and memory use, rather than assembling the entire problem ‘mono-
lithically’ as a single matrix A which then subsequently needs to be split into blocks to apply a
block solver, it is preferable to assemble the sub-matrices A00, A01 and A10 directly to avoid the
copying. Moreover, the operator and the preconditioner can share matrix blocks (in the case of
Stokes, the A00 block) and the structure of each block is simpler, which allows optimisations such
as local degree-of-freedom (DOF) blocking. Using the PETSc MatNest interface, it is possible to
create a ‘nested matrix’ which effectively holds pointers to each sub-block. The PETSc MatNest

type matrix behaves in most ways as a regular matrix, but the underlying storage is a collection of
sparse matrices.
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2.1 Interface

We show here some code extracts for creating nested matrices from finite element forms. Complete
examples are available in the code repository.

We have generalised the DOLFIN dolfin::SystemAssembler class to support the creation of
nested matrices. It can now assemble a collection of forms, together with boundary conditions, into a
corresponding set of matrices and right-hand side vectors. When Dirichlet boundary conditions are
applied (algebraically), for a given boundary condition both the diagonal and off-diagonal block(s)
must be be modified.

Previously in DOLFIN, in a mixed formulation (not blocked) for Stokes’ equations we would
have written (in the C++ interface):

auto a = std::make_shared<Stokes::Form_a>(W, W);

auto L = std::make_shared<Stokes::Form_L>(W);

dolfin::SystemAssembler assembler(a, L, bcs);

auto A = std::make_shared<dolfin::PETScMatrix>();

auto b = std::make_shared<dolfin::PETScVector>();

assembler.assemble(*A, *b);

to create the global matrix A and the vector b. In the low-level version of the new interface, it
becomes:

// Create forms

auto a00 = std::make_shared<Stokes::Form_a00>(V, V);

auto a01 = std::make_shared<Stokes::Form_a01>(Q, V);

auto a10 = std::make_shared<Stokes::Form_a10>(V, Q);

auto L0 = std::make_shared<Stokes::Form_L0>(V);

auto L1 = std::make_shared<Stokes::Form_L1>(Q);

// Assemble all blocks

dolfin::SystemAssembler assemblerA0({a00, a01, a10, NULL}, {L0, L1},

{{bc}, {}});

auto b0 = std::make_shared<dolfin::PETScVector>();

auto b1 = std::make_shared<dolfin::PETScVector>();

auto A00 = std::make_shared<dolfin::PETScMatrix>();

auto A01 = std::make_shared<dolfin::PETScMatrix>();

auto A10 = std::make_shared<dolfin::PETScMatrix>();

assemblerA0.assemble({A00, A01, A10, NULL}, {b0, b1});

From the blocks, a nested matrix can be created and used in a PETSc solver. An analogous interface
to the SystemAssembler is also available in Python.

At first, the process appears more complex, but it is simply a deconstructed version of the
previous code. The FunctionSpace W is now separated into V and Q, and the mathematical forms
are expressed separately. This mirrors standard mathematical notation. Previously, we might have
written the form description (in UFL [2] syntax) for ‘a’ as follows:

a = inner(grad(u), grad(v))*dx - div(v)*p*dx - div(u)*q*dx
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(a) (b)

Figure 1: Matrix sparsity pattern for a small 3D Stokes problem with (a) monolithic/non-blocked
construction and (b) with nested matrix structure.

but that now becomes:

a00 = inner(grad(u), grad(v))*dx

a01 = -div(v)*p*dx

a10 = -div(u)*q*dx

The low-level interface is not a major challenge for users and offers full control. In addition, we
have added a new function block split operator to the form language UFL to automatically ‘split’
variational forms, built on mixed function spaces, into components. Each component of the split
form corresponds to a block in the matrix operator. We have implemented the necessary tools for
the high-level interface and are receiving user feedback before finalising for a future FEniCS release.

2.2 Matrix structure

The monolithic approach for the Stokes problem with Taylor–Hood elements in three dimensions
leads to the a matrix sparsity pattern shown in Figure 1(a). The graph re-ordering that DOLFIN
applies interlaces the velocity and pressure degrees-of-freedom, and attempts to cluster the non-
zeroes close to the diagonal. Since the velocity and pressure degrees-of-freedom are not collocated,
it is not possible to exploit the node-wise block structure of the degrees-of-freedom (three velocity
components at each ‘node’), which means that memory locality at each node cannot be exploited
in matrix-vector products.

The sparsity structure for the new nested matrix implementation is shown in Figure 1(b). The
very small empty block in the lower right-hand corner is the zero A11 block, which we no longer need
to store with the nested format. While it cannot be easily perceived from the figure, the large A00

block now exploits local velocity degree-of-freedom blocking, with groups of three velocity degree-
of-freedoms blocked together. This is possible as the velocity and pressure degrees-of-freedom are
not interlaced. Moreover, the large A00 block is shared by the operator A and the preconditioner
P , which leads to large memory savings.
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2.3 Memory usage

A motivation for adding support for PETSc nested matrices (MatNest) was to reduce memory usage
compared to the automatic copying of matrices into a nested format internally by PETSc. We had
previously observed that the high memory usage of the PETSc ‘automatic’ splitting severely limited
the utilisation of compute nodes.

Figure 2 shows the memory usage on one of the compute nodes on ARCHER, used during a
simulation, against time for solving Stokes’ equations using: (a) the PETSc automated splitting
(‘AutoFieldSplit’); and (b) the new interface to PETSc MatNest. The plots include all phases of
the solution process, from initial mesh construction and partitioning, through to the solution of the
linear system. It is clear from the plots that the peak memory usage for the MatNest implementation
is reduced by a factor of approximately three compared to the auto-split case for 96 processes, and by
considerably more for higher process counts. The dashed red line indicates the maximum available
memory on a node. Due to the memory requirements exceeding the available memory on a node, we
could not complete the larger simulations using the automatic PETSc splitting, whereas we could
perform simulations using the new functionality. This clearly illustrates how the new interface
allows machines like ARCHER to be more effectively and efficiently used.

The memory spike during the simulations for the auto-splitting implementation coincides with
the construction of the solver and algebraic multigrid preconditioners, at which point matrix copies
are being made. Moreover, since we cannot set the local degree-of-freedom block size, the multigrid
construction becomes very costly in terms of memory. The nested matrix approach allows the local
block size to be set on matrix blocks, which reduces the memory requirements substantially during
construction of the preconditioner.

2.4 Scaling

Weak scaling results are summarised in Figure 3, using the PETSc GAMG (algebraic multigrid)
preconditioner for the A00 block, and Hypre BoomerAMG (algebraic multigrid) for the M block.
The matrix assembly phase scales well. The modest growth in the time for the preconditioned
Krylov solver can be attributed in part to a modest increase (roughly 10%) in the iteration count
over the 16 fold increase in problem size. We have put limited effort into tuning the multigrid
preconditioners for this problem as it falls outside the scope of work. Some improvements may be
possible through tuning of the preconditioners.

3 Discontinuous Galerkin Methods in parallel (WP2)

Discontinuous Galerkin (DG) methods are finite element-like methods which, in addition to the
usual loop over mesh cells, also involve a loop over mesh facets. To compute facet contributions
to the global matrix, data from the two adjoining cells/elements is required for each facet. DG
methods are particularly appealing for transport equations as they allow the natural evaluation of
fluxes across cell boundaries, with the choice of an appropriate flux expression being essential for
stability and accuracy of a method.

DOLFIN has supported DG methods in serial for some years. However, DG methods were not
supported in parallel on distributed memory computers due to the absence of a mesh ghost layer
at process boundaries. Without a mesh ghost layer, it was not possible to compute fluxes on facets
that are shared by two processes. In this project, DOLFIN distributed meshes have been extended
to support layers of ghost/halo cells. The parallel performance of the new developments is presented
below.
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(a) (b)

(c) (d)

(e)

Figure 2: Memory usage for the auto-split and the new nested matrix implementation on ARCHER
for the Stokes’ equations with approximately 130k DOFS per process/core.
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Figure 3: Weak scaling on ARCHER for a Taylor–Hood Stokes simulation in three dimensions with
approximately 130k degrees-of-freedom per process.

3.1 Construction and partitioning of ghosted meshes

DOLFIN has been extended to permit distributed meshes to be constructed with different types of
ghost/halo cell layers, such as cells connected by facet or cells connected by vertex (see Figure 4 for
an illustration). In Figure 5 we compare the timing for construction of ghosted and non-ghosted
meshes. The timing includes the graph partitioning step, which is performed by a third-party
library and is a very difficult problem to make scale well. We see that the addition of ghost layers
has minimal impact on the time required for mesh construction, compared to the ‘non-ghosted’ case.
Users can specify the mode of mesh ghosting by setting a parameter, ‘ghost mode’ to ‘shared facet’
or ‘shared vertex’.

To manage memory effectively, it was decided that it is best for the distributed layout of a
mesh to be specified by the user at construction. The avoids the complexity of lazy automated
construction of a ghosted mesh once the user equation has been analysed, and which can lead to
memory management difficulties. Therefore we decided to require the user to specify the type of
ghosts/halo at mesh construction. If a mesh does not have a suitably constructed ghost region for
a given equation/method type, an informative error message is printed.

3.2 Assembly of forms on ghosted meshes

We now show some timings for assembling the matrix operator on a ghosted mesh for two DG
methods. This was not previously possible with DOLFIN, hence we do not compare with a previous
version of the library.

Figure 6 shows the assembly time for the Poisson operator using the interior penalty method
with up to over 2.5 billion degrees-of-freedom. The assembly phase clearly scales well. Figure 7
shows the assembly time for an upwinded DG method for the scalar advection operator. Again, the
assembly process scales well.

The inclusion of cell ghost layers opens the possibility of eliminating communication during
matrix assembly in favour of redundant computation at process boundaries. We have chosen at
this stage to not implement support for communication-less matrix assembly. Based on assembly
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Figure 4: Example of mesh ghosting on 3 processes in two dimensions. Colours represent parti-
tioning, with local cell indices shown on cells, and sharing processes at vertices. Yellow vertices are
ghosts, green are shared, and black are exclusively local.

Figure 5: Time to partition and build the mesh for ghosted and non-ghosted meshes. The meshes
constructed here were used for the results shown in Figure 6, with ∼40,000 cells per core.

10



Figure 6: Weak scaling for the assembly of the Poisson matrix operator using an interior penalty
DG method, to over 2 billion dofs. The numbers at each point show the number of processes. Note
the halo exchange process is fast and scalable. The graph partitioner (ParMETIS) is an external
dependency.

Figure 7: Weak scaling for the assembly of the advection matrix operator for an upwinded DG
method over 2 billion dofs. The numbers at each point show the number of processes.
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profiling data, we have seen that the present assembly scales well, so it was decided that adding
communication-less assembly would be a premature optimisation. It would increase code complexity,
and severely complicate and burden the automated testing systems which would need to perform all
tests with and without communication-less assembly. However, the necessary hooks to implement
communication-less assembly have been developed (with switches to iterators to iterate over just over
local cells, or over both local and ghost cells). If it proves necessary, the activation of communication-
less assembly will be straightforward in the future.

4 Profiling, performance and tuning (WP3)

As part of this work, some new platform-independent profiling tools for FEniCS/DOLFIN have
been implemented, and a number of general performance and memory usage improvements have
been made.

4.1 New profiling tools

We have developed here some new techniques for profiling the DOLFIN core library. A question
which often arises is how much memory is being used at any particular point in the code. Usually,
we want to work near the limits of the machine with the memory high-water mark for a node
close to the maximum available memory on that node. Conversely, we would like to optimise the
code so that we can reduce the high-water mark of memory usage. The package atop [6] allows us
to continuously log memory usage for a machine (along with other statistics). We can do this by
running the command: ‘atop -w atop.dat 1’ to log to the file ‘atop.dat’ once per second. During,
or after a run, we can check the memory usage with ‘atopsar -m -r atop.dat’. On ARCHER it
is difficult to launch multiple codes at the same time, so we need to employ a shell script to launch
atop at the same time as the main code under test:

#!/bin/bash

if [ $ALPS_APP_PE -eq 0 ]; then

atop -w atop.dat 1 &

fi

./code_under_test $*

This script is then launched in the usual way with aprun. The memory/time plots presented in
this report were generated in this way. In principle, this technique is code independent, and can be
used with any executable, without the need for recompilation with special profiling tools.

Memory profiling has proved very useful for identifying points in time when usage is high.
However, to understand and improve code it is important to be able to identify what the code
is doing at a particular time and to match this to the memory being used. In order to do this,
we applied a small patch to the Timer class in DOLFIN. At present, the Timer is an object which
measures the time between its instantiation and destruction in the code. By adding a simple logging
statement to the constructor on process 0, we can get ‘tickmarks’ indicating when the timer was
triggered. It is then possible to align events with the memory-time graph. An example is presented
in Figure 8.

4.2 Improved distributed mesh memory usage and construction

The reading, partitioning and construction of unstructured meshes in parallel is a challenging prob-
lem since very little can be assumed about the structure of the input data. Partitioning a mesh
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Figure 8: Memory versus time with text showing what step/action the code is performing at at
particular time. These graphs are intended for developer inspection rather than public presentation.

requires non-trivial algorithms to construct a dual-graph for partitioning, and to subsequently num-
ber mesh entities globally.

We have made a number of significant improvements to dual graph construction, partitioning
and distributed mesh construction. In particular:

• New algorithm for the construction of the process-wise dual graph. The new algorithm, which
avoids the use of unordered maps is approximately two times faster with gcc and four times
faster with clang. It also reduces the memory used, which is now independent of the quality
of the input ordering (the degree of the memory improvement depends on how ordered/dis-
ordered the input mesh is for the old implementation). We do not present performance plots
as this step is entirely local.

• The dual graph that DOLFIN constructs to pass to a mesh partitioner has been re-designed
such that the graph can now be shared with the graph partitioners rather than copied. This
reduces the memory used during mesh construction. This change required some templating
to match the partitioning library integer type. The memory required for the dual graph is
reduced by half.

4.3 Ordering algorithms

We have made it possible to apply local graph ordering strategies for the ordering of cells and
vertices on processes, using the library SCOTCH. This can impact the speed of iterating over mesh
entities by enhancing data locality. The effect of these operations is problem dependent, and in
particular depends on the quality of the input mesh ordering. Users can switch the re-orderings on
and off, depending on what best suits their problem.
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5 Documentation and testing (WP4)

The newly implemented interfaces are documented in the code, and unit tests and example programs
have been added. The new developments are in a branch in the main DOLFIN Git repository. Once
merged into the main branch, the tests will be run upon any changes to the DOLFIN code (as part
of the DOLFIN continuous integration system). Additional tests will be added as the high-level
user interface evolves with user feedback.

6 Conclusions

The technical objectives of the work have been successfully achieved. The code developments are
available in the development version of the relevant libraries, and are accessible via the public
Git repositories (https://bitbucket.org/fenics-project/). The ghosted mesh functionality is
available in the FEniCS 1.6 release, and other developments will be incorporated into a future release
version of the FEniCS libraries. Developments in the project have already been used in published
EPSRC and NERC supported scientific works, e.g. [7, 1], and are already being made available to
users through the third-party library TerraFERMA (http://terraferma.github.io/).
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