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Abstract

We describe our work to improve the grid generation for HemeLB, a
lattice Boltzmann based, highly parallel, computational fluid dynamics
application. The software engineering challenges proved to be severe but
we have created a tool that is accurate and consistent, parallel in two key
parts of the process. For realistic problems using a 36 core machine we
can now produce voxelisations of a factor of ten faster.

1 Introduction

This report summarises the work done during the eCSE project 03-13, “Grids
in grids: hierarchical grid generation and decomposition for a massively paral-
lel blood flow simulator” to improve the HemeLB computation fluid dynamics
software [7, 8, 5].

Lattice Boltzmann methods work on a structured grid, typically a single
resolution regular cubic (or square in two dimensions) Eulerian grid. The core
problem we face is how to move from a Lagrangian triangulated representa-
tions of a surface to a voxelised, Eulerian grid of particles in an efficient and
accurate way. Further, many boundary conditions for LBM require accurate
determination of the cut distances, which are distances along the links between
neighbouring points where intersection occurs.

A key problem faced in computational science that is not seen in the com-
puter graphics field, where the majority of relevant published work is available,
is the demand for higher accuracy so as not to introduce extra sources of error.
This is particularly important for computation fluid dynamics problems where
the flow is largely determined by boundary conditions.

Most methods for representing irregular geometrical objects use some sort
of multi-block approach: typically either multiblock or tree-based. In the pro-
posal stage, we restricted ourselves to tree-based approaches due to the planned
objectives. There are two main types of structure: octrees and k-d trees.

Octrees start with a root node that represents a cube of space. A node can
have children that represent a subspace of the parents space, divided into eight
equal cubes, as shown in Figure 1. This has the advantage of relatively simple
traversal and the possibility to deterministically assign an indexing to nodes in
the tree.
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Figure 1: Schematic of a three-level Octree. (Image c©WhiteTimberwolf, [CC
BY-SA 3.0], https://commons.wikimedia.org/wiki/File:Octree2.svg)

K-d trees are binary trees, where each node represents a cuboidal space.
If a node has children, then the nodes space is split along a hyper-plane per-
pendicular to one of its dimensions and each sub-space assigned to one of the
two children. Commonly the splitting dimension is cycled with each level down
through the tree, but this is an implementation choice. K-d trees can be more
optimal by some measures but are more complex to implement; we did not find
any uses in the literature for voxelization methods.

A brief survey of the literature around voxelization a large number of ap-
proaches towards producing a surface voxelization, defined as identifying those
voxels which through which any surface triangle passes. While this is not what
we seek, from this we can, in principle determine which points are inside the
domain and then fill the interior. The mostly widely cited method appears to be
that of Huang et al. [6], which operates on a dense output voxel field. A number
of other authors [13, 2] have extended this method to work using octrees to store
the output voxelization. A few other widely cited methods [15, 10] have been
published but they appear to be more complex to implement.

2 Setuptool

Here we discuss the improvements made to the HemeLB grid generation tool,
which we refer to as the setuptool.

2.1 First implementation

We designed the workflow shown in table 1 to combine Huangs algorithm with
a voxel octree in order to allow efficient shared-memory parallelism. We chose
to use a test-driven style for development and to implement each step in order.

For preprocessing, we reused the existing code in python to a large extent
and then passed the data into the C++ extension module inside VTK data
structures as before. As part of this work, we replaced the setuptools old binary,
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Serial Preprocess input triangulation
Serial Prepare emtpy octree
Parallel over triangles Sort triangles onto mid-level of tree
Serial Merge trees
Parallel over subtrees Apply Huang’s algorithm to all triangles attached
Parallel Flood fill interior
Serial Write output

Table 1: Planned workflow for setuptool

Pickle-based format (so called profile files, .pro extension) with a simple, human
readable YAML profile file and created a small tool to convert old files to the
new format.

We implemented a simple Octree template class in C++, using std::shared_ptr
to hold the references to child-nodes in order to allow the subtrees to be effi-
ciently shared across threads. This data structure allows easy growth of the
tree at the cost of many dynamic memory allocations. The obvious mitigation
of using memory pools wrapped in an allocator was planned for later in the
project. We created a unit test harness using the CPPunit library1 which is
used by the main part of HemeLB.

A surface can have many thousands to millions of triangles which, in the
VTK data structures used to read, clip and scale the domain, are not ordered
in any way. Therefore sorting these spatially such that Huangs algorithm can
be applied efficiently in parallel is needed. We decided to simply divide the
unsorted list of triangles into contiguous chunks and for each chunk create an
octree with the triangle IDs (an integer) assigned to a set at the middle level of
the tree. We chose to use boost::flat_set here to allow fast merging of the
IDs since it stores data in a single contiguous chunk and maintained in order.
Each chunk is to be processed asynchronously using std::async in a thread
and, since each thread will only write to its own private tree, scaling should be
good. The resulting output tree was, as per the API of std::async, stored in
a std::future. As these cannot be copied, we stored them in a std::deque

which does not need to copy/move its contained elements. Thus launching the
threads becomes straightforward:

std : : deque<std : : future<TriTree>> f u t u r e s ;
for (auto i = 0 ; i < ntasks ; ++i ) {

dec l type ( n t r i ) min ind = i ∗ tpp ;
dec l type ( n t r i ) max ind = std : : min ( dec l type ( n t r i ) ( ( i +1)∗ tpp ) , n t r i ) ;
auto t r i S t a r t = t r i a n g l e s . begin ( ) + min ind ;
auto tr iEnd = t r i a n g l e s . begin ( ) + max ind ;
f u t u r e s . push back (

std : : async (
std : : launch : : async , work funct ion ,
n l e v e l s , t r i l e v e l , po ints , t r i S t a r t , triEnd , min ind

)
) ;

}

1http://cppunit.sourceforge.net/doc/lastest/index.html
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The main thread can then inspect the resulting trees, merging them.
We then implemented Huangs algorithm for producing a surface voxelization

and twelve unit tests. The implementation was relatively short at 216 lines. The
basic process is:

• For each triangle:

– Compute the bounding box in terms of voxel centres.

– For each voxel in the bounding box check:

∗ Is the point closer than RC =
√

3/2 to a vertex?

∗ Is the point within a bounding cylinder of radius RC along each
edge?

∗ Is the point between the two planes parallel to the triangle but
offset by t26 (as defined in Huang [6] Fig. 10)?

∗ If any test is true, the point is a surface voxel.

∗ Determine, using the triangle normal, whether the voxel is inside
the domain (i.e. is fluid).

∗ If fluid, check for an existing octree node and create an empty
one if one does not exist.

∗ Compute the cut distances from the point to the triangle along
the 26 nearest neighbour directions. If the new cut distance is
closer, store the new cut distance and the ID of the triangle.

This algorithm was time consuming to implement but thanks to the unit
tests (12) we had some confidence that it was correct. The implementation in
parallel was relatively straightforward: a queue of tasks was created as before
for execution by a thread pool. Each task stores creates a std::future which
can be checked for the value. The main thread awaits each, in turn, merging
them into a final tree if there are any fluid leaf nodes.

The flood fill algorithm was, however difficult to implement in parallel. We
decided to use a known-fast serial algorithm using a queue of sites that are
fluid but have yet to have their neighbours tested. We planned to replace the
simple queue with a multi-producer/consumer thread safety guarantee, such as
boost::lockfree::queue, at a later stage to parallelise this.

For the initial output, we wrote a simple text-based format for fast debug-
ging.

We then began integration testing with some test problems, such as a simple
pipe and a sphere, failed. Detailed and time-consuming investigations showed
that some links between sites were finding intersections with the surface which
were being missed by other links. An illustration of a typical case is shown in
figure 2. Assume that the black-filled point is correctly identified as being a fluid
site. We then calculate the intersections with the triangles and the intersections
marked in grey are correctly found. However for the vertically upwards link, no
intersection between either the left or right triangles is found. In the left case
there is indeed no intersection, but in the right case, an intersection should have
occurred but was not. This area is highlighted in red and shown zoomed in on
the upper right.

The reason for this is that when one is doing finite-precision mathematical
operations (dot and cross products, as well as conventional multiplications, ad-
ditions etc), there is of course some small but finite error. When it comes to
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Figure 2: Illustration of a missed intersection. The point filled with black is
correctly identified as being a fluid. Some intersections (grey) are correctly
found. One, moving vertically upwards, is missed and is highlighted in red (see
zoomed subfigure in top right).

determining if, for example, a line intersects a triangle, one must compare some
computed quantity to a threshold. In the illustration shown in figure 2, this
inequality fails to indicate intersection and the process now fails spectacularly.

When the flood fill algorithm inspects the neighbours of the black point, it
sees no intersection when examining the link in the up direction and thus marks
that exterior point as fluid. Our domain has sprung a leak! This causes the
flood-fill step to fill the entire bounding cube at large computation expense and
produces an invalid voxelization.

2.2 Second implementation

Given the issues around imprecision intersection detection, we decided to reim-
plement the surface voxeliser using CGAL (Computational Geometry Algo-
rithms Library) [14] which offers computational geometry primitives such as
line-triangle intersection etc.

The conversion to use CGAL was very challenging due to the sometimes
complex ways the tests have to be constructed to ensure a consistent decision
and eventually we abandoned using Huang’s algorithm as too complex.

Instead we chose to use a CGAL data structure called CGAL::AABB_Tree: an
axis-aligned bounding-box tree. Given a list of polygons, CGAL will build a tree
structure that allows the user to perform intersections between the contained
polygons and test primitives, such as the line segments we require.

We replaced Huang’s algorithm with the following. First, construct a CGAL
AABB seach tree and in parallel for each mid-tree level node with triangle data
attached:

• For each grid point in the block

– For of the 26 neighbouring points grid points

∗ Compute all intersections

∗ Sort the intersections by cut distance

∗ Merge approximately coincident intersections

∗ Store the closest intersection to the grid point

– Classify the site by analyzing all links
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∗ Use the normal of the triangle to determine if the closest inter-
section implies we are inside or outside.

∗ If inside get or create a node in the output subtree and fill in
this link’s data.

– Check that all links implied the same side of the boundary

– Store wall normal in site data.

These sites will be only those that are interior to the domain and have at least
one of their lattice vectors intersected by the surface.

The reason for filtering coincident intersections is that CGAL will create
multiple intersections for line segments that intersect very close to an edge or
corner. We set a tolerance ε as a fraction of the displacement vector. We chose
to merge multiple intersections on the same side of the boundary, arbitrarily
picking a single triangle as the one intersected. In the case of two intersections
being on opposite sites, we chose to discard them both, as in this case it repre-
sents a small concavity in the surface and can be ignored with only a very small
error.

We chose ε = 10−3 after running a few experiments and finding this to be the
largest value that did not cause problems. We also chose to track the number of
leaf edge sites stored within the subdomain of each octree node. When adding
a node to the subtree this means incrementing the counter at each level.

2.3 Improving output format

Outputting in a verbose text format was useful during development but is obvi-
ously not useful for geometries with many millions of sites. Inspired by PETSc’s
concept of a section we created a simple static data structure to represent the
octree structure.

An N -level octree is represented by N + 1 arrays of nodes. A node is rep-
resented by eight unsigned integers giving the indices of its children, or a null
value (bitwise negation of zero) to indicate that a given child is missing. At the
leaf node level we attach extra data stored in flat arrays. Each leaf node stores
the index of its data items and the number of them. We also compute the total
number of fluid sites within each subtree of the octree which will be useful for
reading the section tree later.

These trees are relatively simple to build in serial, using a simple visitor
pattern for traversing the octree. The vistor simply tracks its current position
as a path from the root of the tree and creates nodes on the way down the tree,
computing summary data on the way back up.

This data structure is then very simple to serialise using HDF5.

2.4 Results

We tested the setuptool using two different domains: a straight cylinder of radius
3mm and a cerebral artery network reconstructed from a 3D angiography scan of
a patient (approximate inlet radise 0.2mm). In figure 3 we show 3D renderings
of the two geometries from the setuptool GUI. The green (red) planes mark the
inlets (outlets).
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Figure 3: Visualisation of the pipe (left) and circle of Willis (right) domains
used for testing.

For each of the two problems we started at the lowest resolution voxelisation
that would give simulations of any accuracy and then refined by a factor of 2
until runs times became unmanageable. The resolutions used were:

Pipe : 0.4mm, 0.2mm, 0.1mm, 0.05mm, 0.025mm

CoW : 12µm, 6µm, 3µm, 1.5µm

We ran all the tests on a single node of Cirrus, which contains two 2.1GHz,
18-core Intel Xeon E5-2695 (Broadwell) CPUs and 256GBof RAM.

In figure 4 we plot the total run time for both versions of the setuptool and
the two geometries versus the number of sites produced. In all cases, the run
time scales approximately linearly with the number of output sites as one would
expect since something is being created for each site.

For the pipe problem, the run times of both implementations are very similar
however of the CoW, the new setuptool outperforms the old one by a factor of
approximately ten.

To understand the performance better, we tracked the wall clock time of
the different stages of the process. In figure 5 we show these, excluding the
preprocessing and triangle sorting steps as these took a negligible fraction of the
total. The results clearly show that the flood fill step is dominant, as it must
visit every fluid site in the output in serial, much as for the old implementation.

3 Protopart

We have developed a standalone library, Protopart+PPStee2), which is able
to apply and analyse a range of decomposition algorithms. The library takes
HemeLB domain data as input, and performs the process of assigning individual
blocks to computational cores using a user-specified algorithm from the options:

• Parmetis [12]

• PT-Scotch [4]

• Zoltan [3]

2http://www.github.com/djgroen/protopart
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Figure 4: Total time for domain voxelisation with old and new implementations
of the setuptool, indicated by yellow and blue respectively. We show results for
two different domains, a simple pipe (crosses) and the circle of Willis (circles).
Each domain is discretised with multiple resolutions giving different numbers of
output sites (x-axis). All runs performed on a single node of Cirrus.
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Figure 5: All runs performed on a single node of Cirrus.

Within Protopart with have created some tools for assessing the quality of
domain decompostions produced. Given P processes, let each domain i have Ni

sites assigned and Li links from its sites to sites on another domain j 6= i. The
quality metrics are

• The maximum number of lattice sites assigned to a domain scaled by the
average, i.e., maxNi

N̄i
.

• The maximum number of neighbour links per domain scaled by the average
number of neighbour links, i.e., maxLi

L̄i
.

• The largest number of connected neighbouring domains.

We have modified HemeLB to allow the user to provide the domain decom-
position instead of computing one at simulation startup. In this way we can use
Protopart+PPStee for quick diagnostics and testing, with immediate feedback
on the quality. We can then feed this decomposition to HemeLB for actual
simulations, optionally refining it with the preexisting decomposition library.

However, this implementation proved to be much more complex than ex-
pected, and our initial implementation led to errors for very large problems
that we did not resolve during the project.

In collaboration with colleagues at UCL since the project finished, we have
completed this work, incorporating the Zoltan [3] graph partioning library into
HemeLB [11].

4 Improvements to HemeLB

We first implemented checkpointing within HemeLB. This reused the existing
property extraction framework for IO. HemeLB controls output of data via an
XML file, specifying the names of output files. Each file will contain a single,
static set of grid points selected by a combination of simple selectors (whole
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geometry, surface points, near plane, near disc, near line segment). The fields
written are configured by the XML file also, being selected from a list of options:
pressure, velocity, shear stress, etc. We added a further option, “distributions”,
which writes the distribution functions fi that the lattice Boltzmann methods
uses.

HemeLB also configures the initial conditions via the <initialconditions>
element in the XML input file. Previously, the only allowed initial condition
was constant pressure: i.e. the fluid in the domain was initialised to fluid at
rest and local equilibrium with a constant pressure.

We first refactored the initialisation code into a separate class that was ini-
tialised with the data read from the XML (or sensible defaults). We then created
a simple class hierarchy of an abstract base class with two concrete subclasses:
the preexisting EquilibriumInitialCondition and the new CheckpointInitialCondition.

The new initialiser needs to read the extracted property file corresponding
to a checkpoint. We had not implemented this in HemeLB, only in the post-
processing tools written in Python, but having that as a reference made the
implementation in C++ simple. Combined with a few new unit tests this was
simple. However, the order of data within an output file depends on the domain
decomposition and dealing with restarting on different decompositions, possibly
on a different number of MPI tasks, was non-trivial.

Due to the overruns in the implementation of the setuptool, we restricted
ourselves to restarting on exactly the same decompositions. Effectively this
means using the same version of HemeLB, compiled with the same LB options,
and run on the same number of MPI tasks. Then each task can easily (via the
same code used for preparing to write the output) compute the offsets of the
data it must read. This is read in with a collective MPI IO read and we then
check that we have read in exactly the points we needed.

5 Conclusion

Implementing an accurate, consistent, parallel, efficient meshing tool is a very
difficult software engineering task! We have created a tool that is accurate and
consistent after much effort. Some key parts of the process are parallel and
efficient and for realistic problems, using a 36 core machine we can now produce
voxelisations a factor of ten faster.

We have implemeted tools for producing and analysing decompositions and
added checkpoint restart capabilities to HemeLB.

5.1 Further work

Improve memory locality for Octrees. Since the most time-consuming part
of the grid generation process, the flood-fill step, is heavily dependent on
traversing the octrees, storing the nodes close to each other in memory will
reduce the number of cache-misses. This can be done using the allocator
abstraction used heavily by STL containers [1, 9].

An alternative would be to provide a different storage policy for the octree
used as output. Since this data structure is used in an append-only mode,
the overhead of using std::shared_ptr3 can be avoided.

3A shared pointer is typically implemented as a pointer to a “control block” containing a
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Redesign the flood fill step using knowledge of octree. The flood fill al-
gorithm used creates a leaf node for every site that it visits. Allowing the
fill to move across branch nodes that are entirely filled with simple bulk
fluid sites will drastically reduce the cost in memory and run time. This
would have the benefit of also reducing the cost of the section tree building
step.

Parallelise flood fill step Currently this is serial, allowing multiple threads
to work on this would be very advantageous although locking of the sub-
trees was a very difficult problem.

Adapt HemeLB to directly read octree format files This would remove
a step in the simulation workflow and open the door to the improved flow
settlement work originally proposed.
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