
Implementing lattice-switch Monte Carlo in

DL-MONTE to unlock efficient free energy

calculations

Kevin Stratford and Tom Underwood

Version 1.0, February 28, 2017

2 lattice-switchMonte Carlo

Abstract

Lattice-switch Monte Carlo (LSMC) is an efficient method for calculating free

energy differences between crystalline phases. Here, LSMC is implemented in the

general-purpose Monte Carlo simulation package DL-MONTE. This has enabled

LSMC to be applied to a range of systems which have never before been possible to

study via LSMC, including systems comprised of atoms or rigid molecules. These

may interact via a wide range of force fields, including long-range Coulomb interac-

tions, and may be under conditions of constant density or constant pressure. LSMC

renders tractable computation of free energy differences for systems with large en-

ergy barriers between lattice structures or phases which are difficult to address using

alternative methods.

In addition, a python toolkit has been developed to control the workflow of DL-

MONTE simulations, and to perform common pre-processing and post-processing

tasks. This allows scripted workflows to be undertaken efficiently. In particular, the

toolkit can be used to perform ’histogram reweighting’, which allows simulation data

obtained at one set of control parameters (e.g., temperature and pressure) to be used

to provide information regarding other nearby control parameters. This can reduce

the number of simulations required, for example, to identify the exact location of

the co-existence points and curves that form phase diagrams. The toolkit can be

generalised to other sources of simulation data and is not bound to DL-MONTE.

1. Introduction

The ability to predict the free energy difference between two specified phases by

theory alone would be invaluable to many fields of science. One important appli-

cation is calculating phase diagrams in conditions inaccessible to experiment: at a

given temperature and pressure the stable phase is that with the lowest free energy.

Unfortunately, for most systems of practical interest it is not currently possible to

predict free energy differences to the accuracy required for practical applications,

even with hardware such as ARCHER at our disposal. Fortunately, significant gains

in accuracy can be achieved by implementing more efficient methods within exist-

ing software. Lattice-switch Monte Carlo (LSMC) (see [9] for a review) is a method

eCSE Technical Report 3

which allows the free energy difference between two crystalline phases to be calcu-

lated efficiently. However, this method has not been adopted by the scientific com-

munity at large, despite evidence suggesting it is orders of magnitude more efficient

than the alternatives. This report describes such an implementation, and a number

of associated developments carried out as an ARCHER embedded CSE programme

project.

2. Lattice switch Monte Carlo

This section provides a brief background to lattice-switch (sometimes referred to

as phase-switch) Monte Carlo as implemented in DL-MONTE. The method was

originally developed to look at the hcp-fcc problem in hard-sphere solids [2, 3] but

can be adapted to many types of system.

2.1. Background

A given system may be free to visit two phases A and B (and only phases A and B),

in which case the equilibrium phase is that with the lower free energy. (In the NVT

ensemble this is the Helmholtz free energy, and in the NPT ensemble the Gibbs free

energy.) To determine the equilibrium phase, one wants to compute the free energy

difference ∆F = FA − FB between the phases. Standard statistical mechanics can

be used to show that the free energy difference may be related to the ratio of the

probability that a simulation is in a given phase p, i.e., ∆F = β−1 ln(pB/pA), where

β is the appropriate Boltzmann factor.

In a molecular dynamics simulation, one could monitor the time spent in the

different phases and use this as a proxy for the probabilities. The problems start if

one phase or other is inaccessible, meaning that phase is effectively never visited

during any reasonable simulation. This is precisely the situation when a large free

energy barrier exists between the phases — the region of the phase space associated

with one phase is very improbable at thermodynamic equilibrium. This itself is a

barrier to investigation of systems in which phase changes occur.

Monte Carlo can hold an advantage in this situation: the freedom to design

4 lattice-switchMonte Carlo

Monte Carlo moves means that if one can design an appropriate trial move which

samples both phases with the correct statistics, one can hope to compute free en-

ergy differences efficiently. This is what lattice-switch Monte Carlo does. More

specifically, if the positions of atoms or molecules ri in the system can be written as

ri = RA
i + ∆ri, (1)

where ∆ri is the displacement of a particle from an underlying lattice position RA
i for

phase A, then a lattice switch involves a trial move in which RA
i is replaced by RB

i .

In this way, the free energy barrier between the phases is bypassed and sampling of

both phases in a single simulation is tractable.

While in principle this sounds simple, the catch is that it may still be difficult

to generate moves which are accepted with reasonable probability. To help with

this problem transition matrix Monte Carlo [5, 8] has also been implemented in DL-

MONTE, This improves the efficiency of the lattice switch process [9]. In this way

lattice switch utilises multicanonical sampling — as opposed to canonical sampling

which is used in conventional Monte Carlo — to push the system over the free energy

barrier separating the two phases (see [9] for details). Transition matrix Monte Carlo

is a general method and can also be used with methods other than lattice-switch

available in DL-MONTE.

2.2. Benchmarks

To use LSMC in practice, the DL-MONTE user supplies two trial lattice configura-

tions — for example hcp and fcp — which are of interest for the system in question,

and requests the lattice switch method. The user also requests appropriate control

parameters such as the initial state, and the frequency of switch attempts in Monte

Carlo steps. The details of the sampling method used to obtain the free energy esti-

mate is also specified (for example, whether to use transition matrix Monte Carlo).

Standard output at regular intervals then includes information related to the cur-

rent phase of the system and any sampling bias related to transition matrix sampling,

in addition to the current energy and other standard measures. This allows a true

estimate of the free energy difference between the phases to be obtained. Such esti-

eCSE Technical Report 5

mates have been obtained for a number of standard benchmark problems to compare

DL-MONTE results with values reported in the literature.

Table 1 shows the free energy difference recorded by DL-MONTE simulations.

The first two cases consider simple hard sphere systems in the NVT and NPT ensem-

ble respectively. Two crystalline structures are of interest: hexagonal close packed

(hcp) and face-centred cubic (fcc). An ensemble of 16 LSMC simulations each

containing 216 hard sphere atoms and consisting of some 864 million Monte Carlo

updates are performed in each case to gather statistics. For the NVT case, the fixed

density ρ/ρ? = 0.7778 is used, where ρ? is the density corresponding to close pack-

ing for hard spheres. The energy difference is recorded in units of 10−5kBT [1, 3, 7].

For the NPT case, the pressure p, hard sphere diameter d and Boltzmann factor are

chosen so that βpd3 = 14.58 to compare with previous studies [1, 3].

The third example in Table 1 is for particles interacting with a standard Lennard-

Jones potential in the NPT ensemble. Again the two phases hcp and fcc are of

interest. A system of 216 atoms at p = 0 and kBT/ε = 0, 1, where ε is the energy

scale of the potential. The free energy difference between the phases is reported in

units of ε.

The final example in Table 1 is a hard dumbbell example in the NVT ensemble

(a hard dumbbell being a “molecule” of two spheres connected by a rigid bond of a

given length). This is again an fcc vs hcp problem, where the crystal lattice involves

centre-of-mass positions of the dumbbells (which can rotate freely around their cen-

tre of mass). A 864 molecule system is used with a reduced density of ρ = 1.15 (see

e.g., [6] for details). The free energy difference is that per molecule in units of kBT .

These standard examples are available to users as part of the DL-MONTE re-

gression test suite. The LSMC implemented within DL MONTE is not currently

compatible with all functionality in DL MONTE. In particular, LSMC is currently

supported only for: orthorhombic phases; atomic systems and systems of rigid

molecules: flexible molecules are not supported. Moreover, metallic systems are

not supported. The extension of DL-MONTE to such systems will be the subject of

future work.

6 lattice-switchMonte Carlo

System ∆F [reference] ∆F DL-MONTE

Hard spheres (NVT) 133(4) [3] 137(4)

Hard spheres (NPT) 123(6) [9] 135(6)

Lennard-Jones solid 0.001283(7) [9] 0.001290(11)

Hard dumbbells 0.005(1) [6] 0.0043(5)

Table 1: A comparison of free energy differences ∆F computed using DL-MONTE for
a number of standard benchmark problems. The first is a hard sphere system (HCP vs
FCC) at constant volume using 216 atoms compared with [3]. The second is again hard
sphere (HCP vs FCC), but at constant pressure with 216 atoms at (compared with [9]).
See the text for details of the configuration and units in each case.

3. Workflow and the python toolkit

A given piece of computational work often involves numerous simulations, alter-

ing parameters and iterative refinement of results via inspection and analysis. Tools

which help with such workflow, in addition to the main simulation itself, are there-

fore of interest.

As it is not possible to anticipate all possible workflows in advance, a toolkit

approach using a scripting language such as python is an attractive way to help users

manage their particular workflow in a flexible manner. This section describes some

of the building blocks developed by the python toolkit to aid analysis of DL-MONTE

results.

While the toolkit has been developed with DL-MONTE in mind, functionality

such as histogram reweighting is relevant to many kinds of simulation. The toolkit

can be extended to analyse other sources of data by adding a “plugin” class to or-

ganise the data into a standard, structured, form.

3.1. Pre-processing

Scripting infrastructure to allow the manipulation of standard DL-MONTE inputs

describing the simulation configuration have been developed. DL-MONTE uses

three standard inputs (“FIELD”, “CONFIG”, and “CONTROL” files) which are read

eCSE Technical Report 7

at run time and control the configuration of the system and the details of the various

parameters to be used.

The python toolkit provides classes which represent these inputs in a structured

form. This allows for convenient input, output, and manipulation of simulation con-

trol information. The python structured format is readily restructured to other for-

mats such as JSON or YAML.

The python toolkit provides other convenience functions for manipulating DL-

MONTE inputs, which are expected to be in the same location, in one go. For

example,

my_input = dlmonte.DLMonteInput.from_directory(my_directory)

provides a way to group the three standard input files into a single python object.

Such convenience functions can also be used to automate repeated tasks, such as the

running of tests.

3.2. Driving execution

The DL-MONTE executable program may be executed from within a python script

using standard python mechanisms. Again, convenience methods are provided to

aid common operations, e.g.,

myrun = dlmonte.DLMonteRunner(executable, working_directory)

myrun.execute()

executes DL-MONTE in the standard way provided appropriate input is present in

the working directory. The scripting mechanism is sufficiently flexible to allow ap-

propriate launch commands to be used (and is something which should not be tightly

prescribed as such commands are often specific on HPC services such as ARCHER).

3.3. Postprocessing

Reading DL-MONTE output provides the basis of many toolkit operations. Func-

tionality is provided to read either standard DL-MONTE “PTFILE” file output and

YAML format output. Such data are easily accessed via standard python mecha-

nisms, e.g,

8 lattice-switchMonte Carlo

data = myrun.output.yamldata.data

print(data)

These data structures are also suitable for histogrm reweighting, discussed in the

following section.

3.4. Histogram Reweighting

The fundamental idea behind histogram reweighting is to use fully the sampling in-

formation provided by a single Monte Carlo simulation. Often, a simulation only

reports averages of observable quantities of interest. Such averaging throws away

potentially useful information. Histogram reweighting takes a set of instantaneous

observable measurements from a simulation, which should be representative of sam-

pling from the appropriate statistical distribution, and uses Boltzmann weights to

compute the expectation value of that observable had the simulation been run at a

nearby point in phase space of control parameters.

3.4.1. Data Model

To carry out reweighting the toolkit expects data to be presented in a standard way.

The toolkit therefore provides an abstract class ObservableData which may be

extended to provide access to data from any given source. A standard implementa-

tion is provided for DL-MONTE data sources, but an appropriate “plugin” extension

could be provided for other simulation types.

It is expected that “observations” will consist of one or more time series of val-

ues: energy, volume, pressure, density, and so on. Further metadata concerning

control parameters (ensemble type, parameters for potentials, bonds, angles, and so

on) are also required. For DL-MONTE, these are provided by the three relevant in-

put files for the simulation in question. The internal data representation uses numpy

arrays so that manipulations can be carried out efficiently.

3.4.2. Reweighting observations and histograms

Given a series of instantaneous measurements of some observables quantity, which

will be referred to as Oi, together with corresponding measurements of the energy

eCSE Technical Report 9

Ei, the observable can be reweighted to a new temperature in the NVT ensemble via:

〈O〉β′ =

∑
i Oi exp[−(β′ − β)Ei]∑

i exp[−(β′ − β)Ei]
(2)

where β is the Boltzmann factor at which the measurements were taken, and β′ is

that relevant for the new (nearby) temperature. The exact details of the reweighting

depend on the observable required and the ensemble of the simulation, along with

the Hamiltonian of the system.

Standard observable data as represented in the python toolkit can be reweighted

with some flexibility using the toolkit Reweighter class. For example, in the NVT

ensemble, observations of the energy and the square of the energy can be used

to compute the specific heat. The following code fragment illustrates the energy

(numpy array e1) and the square of the energy (numpy array e2) being used to gen-

erate an array of values of the specific heat at new temperatures kt_new:

cv = numpy.zeros(nrw)

for nt in range(nrw):

e1r = reweighter.reweight_obs(e1, kt_new[nt])

e2r = reweighter.reweight_obs(e2, kt_new[nt])

cv[nt] = (1.0/(volume*kt_new[nt]**2))*(e2r - e1r*e1r)

For each new temperature, the reweighting procedure provides a new estimate of

the energy e1r, and the squared energy e2r, which may be combined to give the

specific heat. A typical result for the Ising model is shown in Figure 1.

To reweight a histogram, the situation is similar. If the histogram associated with

a time series of M measurements of observable Oi at, for example temperature kT ,

is written

HkT (O j) = (1/M)
∑

i

δ(Oi,O j), (3)

where O j represent the histogram bins and δ(Oi,O j) counts the observations in bin

j, it is possible to reweight the histogram to a new temperature via

HkT ′(O j) =

∑
i δ(Oi,O j) exp[−(1/kT ′ − 1/kT)Ei]∑

i exp[−(1/kT ′ − 1/kT)Ei]
. (4)

The toolkit provides a standard Histogram class which can be used in association

10 lattice-switchMonte Carlo

Figure 1: Values of the specific heat in the Ising model from a single simulation (red
circle) are reweighted to a series of temperatures (blue line).

with the Reweighter class to reweight histograms in a flexible manner. An example

of histogram reweighting is given in the following section.

Histogram reweighting cannot generate information where none exists. If one

tries to reweight too far away from the parameters of the original simulation, and

where no sampling is occurring in the simulation, errors will grow to dominate the

result. Some care is required, and guides are available to the maximum safe extent

of reweighting — the exact details depend what quantities are under consideration.

Further discussion is given with the tutorial material provided with the python toolkit

[4].

However, one can combine the information from two or more simulations of the

same system at different control parameters to cover a larger area of phase space.

Such multiple-histogram reweighting can also be undertaken with the toolkit.

3.4.3. Example: identifying co-existence

The following example uses a simple grand canonical Monte Carlo simulation in

DL-MONTE to illustrate the utility of the python toolkit in identifying a good ap-

proximation to the correct location of a co-existence point using a single simulation.

eCSE Technical Report 11

(For this problem the location of the co-existence is known beforehand, the simula-

tion has been chosen close to co-existence. Clearly, this cannot be true in the general

case.)

The simulation uses a µVT ensemble in which standard Lennard-Jones particles

are inserted or deleted with a given chemical potential µ, but otherwise do not move.

The Hamiltonian for the system is

H = −U + µN (5)

where U is the total potential energy, µ is the chemical potential, and N is the number

of particles currently in the system.

Figure 2: A histogram of the density in a GCMC simulation of Lennard-Jones particles.
The two broad peaks in the histogram shows the simulation samples both a low density
and a high density phase.

The simulation is run for 100 million Monte Carlo steps, and the number of

particles in the system is recorded at regular intervals. If one plots a histogram of

the density of the system (effectively just the number of particles in this case) from

the set of measurements, one sees the situation in Figure 2. The two broad peaks in

12 lattice-switchMonte Carlo

the histogram indicates that the simulation samples a low density and a high density

phase, but the asymmetry indicates that the simulation is not exactly at co-existence.

At co-existence one would expect a perfectly symmetric bimodal structure.

At this point one could undertake a series of additional simulations at nearby

parameters to try to find a better estimate of co-existence. However, histogram

reweighting provides a more efficient way to do this. Using the appropriate his-

togram reweighting machinery described in the preceding section, one might try

reweighting to a lower value of the chemical potential (which favours the lower den-

sity phase) via code of the form

rho_histogram.weight_wrt("mu", mu_new)

The resulting reweighted histogram at the new chemical potential is shown in

Figure 3. In this illustration, the new chemical potential is below the true co-

existence value, and the result is weighted more to the low density phase: the value

of µ chosen was too low.

Figure 3: Reweighted histogram of density shifts the position of the maximum of the
distribution into the low density phase.

It is now a relatively straightforward matter to use some standard python library

eCSE Technical Report 13

functions to undertake an optimisation problem to identify a best estimate of co-

existence as defined by some objective. In this case, an appropriate objective is one

which tries to locate an optimally symmetric bimodal histogram. Figure 4 shows

the optimal situation in this particular example. The value of the chemical potential

produced by such an optimisation would then be the best estimate of the co-existence

value. An associated error can be obtained via various standard techniques such as

bootstrapping.

Figure 4: Optimal histogram determined by an objective which attempts to produce a
symmetric distribution.

4. Summary

Implementing LSMC in DL MONTE has enabled LSMC to be applied to a range of

systems which have never before been possible to study via LSMC because relevant

software never existed. LSMC can now be applied to systems comprised of atoms

or rigid molecules interacting via a wide range of force fields, including long-range

Coulomb interactions, under conditions of constant density or constant pressure.

14 lattice-switchMonte Carlo

This is beneficial to the community because it should enable certain free energies to

be calculated in such systems more efficiently, i.e., using less CPU time, than was

previously possible.

The development of the python scripting toolkit should allow workflows to be

generated more efficiently. For example, a parameter sweep might involve 10 dif-

ferent simulations and the analysis of 10 different sets of results. Bespoke analy-

sis is now provided in a single framework. Moreover the availability of histogram

reweighting can reduce the number of simulations required in, for example, identify-

ing the exact location of the co-existence points and curves that form phase diagrams.

Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER UK

National Supercomputing Service (texttthttp://www.archer.ac.uk/).

References

[1] S. Bridgwater and D. Quigley, Phys. Rev. E 90 063313 (2014).

[2] A.D. Bruce, N.B. Wilding, and G.J. Ackland, Phys. Rev. Lett., 79, 3002 (1997).

[3] A.D. Bruce, A.N. Jackson, G.J. Ackland, and N.B. Wilding, Phys. Rev. E 61,

906 (2000).

[4] DL-MONTE: https://ccpforge.cse.rl.ac.uk/gf/project/dlmonte2/

[5] M. Fitzgerald, R.R. Picard, and R.N. Silver, Europhys. Lett., 46, 282 (1999).

[6] M. Marechal and M. Dijkstra, Phys. Rev. E 77, 061405 (2008).

[7] S. Pronk and D. Frenkil, J. Chem. Phys. 110, 4589 (1999).

[8] G.R. Smith and A.D. Bruce, J. Phys. A: Math. Gen. 28 6623 (1995).

[9] T.L. Underwood and G.J. Ackland, Preprint

https://arxiv.org/pdf/1609.04329.pdf (accessed February 2016).

