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Abstract 

This report details the implementation of the Archer eCSE project "Parallelization and 
porting of single-channel analysis tools to the high-performance computing platform".  In 
this project HJCFIT, which is a part of the DCProgs suite of tools, has been transformed 
from a single-process library running on desktop computers to a multi-precision library 
that can utilise a full Archer node and is thus 14 times faster than the original serial 
version. We have implemented multi-precision arithmetic, made the code easier to use on 
high-performance systems and made several other improvements to the overall codebase. 

Introduction 

HJCFIT is a library for the maximum likelihood fitting of kinetic mechanisms to entire 
sequences of single channel open and shut intervals. The HJCFIT method estimates the Q-
matrix, a table of the rate constants describing each transition between pairs of kinetic 
states. The likelihood is calculated using an exact correction method for events that are 
missed because they are shorter than the temporal resolution of the recording. In a typical 
run of the software, the likelihood is calculated on the basis of an initial guess of the Q-
matrix and optimised using a standard simplex algorithm to find the maximum likelihood 
Q-matrix. The optimisation may run for several minutes to hours or even days, depending 
on the complexity of the kinetic model. This makes it clear why running the code in parallel 
and on a queue based system is attractive. 

Speed related optimisations 

This section describes the work performed to complete work-packages 2, 3, 4 and 5. In the 
proposal three different levels of possible loop parallelization were identified. The log-
likelihood calculation consists of a sum of log-likelihoods for independent experiments, 
typically obtained at different concentrations of an agonist. Parallelisation over these 



independent experiments seems attractive, but the number of experiments is typically 
limited to 4-5 in real world examples, limiting the parallel speedup. 

The log-likelihood of each individual experiment is a sum of log-likelihoods for one or more 
bursts. A single burst is a series of one or more openings (note that in this report we will 
use the term burst to cover groups of openings at all concentrations, eg to include also what 
the channel literature would refer to as clusters). In an experiment each burst is separated 
from the next by shut intervals longer than an appropriately chosen critical length. The 
division into bursts is done to ensure that all openings within a burst are from the same 
ion-channel. However, it's not possible to ensure that different bursts are from the same 
channel, as channels may stay closed for a long time while another channel is opening and 
closing rapidly. 

The log-likelihood calculation for an individual burst is independent of other bursts and the 
log-likelihood for one experiment was previously implemented as a serial loop over all 
bursts. Finally the log-likelihood calculation for each burst is a multiplication of a series of 
matrices: one for each individual opening and closing, plus the initial and final vectors. 

Parallelisation can be implemented at both these levels- over bursts (mentioned in WP 4) 
and inside bursts over matrix multiplication (mentioned in WP 3). Most straightforward is 
the loop over bursts as these are fully independent. The matrix multiplications must 
naturally be done in the same order as in the serial case complicating matters slightly. As 
we shall see below it is beneficial to parallelise over both the bursts and individual 
openings to obtain good load balancing. 

A third level of paralelism, within the individual matrix multiplications, can be found. It 
would be easy to exploit the parallelization built-in to the linear algebra library Eigen 
(http://eigen.tuxfamily.org/) used in HJCFIT. Eigen has built-in support for parallel linear-
algebra. However, the matrices used in HJCFIT are small (on the order of 10x10 elements) 
so the parallel speedup within the matrix multiplications is very small. No performance 
difference was found with and without Eigen's parallel linear algebra enabled. We 
therefore chose to explicitly disable Eigen's internal parallelization so as not to interfere 
with our higher level parallelization. 

In the original proposal we suggested rewriting the code to merge and flatten the two loops 
over experiments into one, in order to make the load balancing more efficient. However, 
this would result in a significant change to the code which will make the implementation 
differ significantly from the existing one. Instead we chose the strategy documented below 
to optimise the two levels using a hybrid OpenMP/MPI in which we combined the loop over 
bursts with the parallelization of individual burst likelihood calculations. 

We have not integrated performance regression in the test suite as we had originally 
suggested in work-package 2. This method is most suitable for monitoring performace of 
individual functions.  On consideration, we chose to benchmark and optimize the 
performance of complete simulations, as this is more likely to give us useful information on 
improving performance of the parallel code.  

http://eigen.tuxfamily.org/


Low level OpenMP parallelization 

We chose to implement the parallelization over bursts and the matrix multiplication within 
bursts using OpenMP. The parallelization over bursts involves a fairly minimal amount of 
communication between threads as: 

• the burst data can be pre-distributed 

• the only parameter needed to calculate the log-likelihood for a burst is the Q-matrix 

• the total log-likelihood is a sum over the likelihoods of individual bursts 

The parallelization of log-likelihood calculation over an individual burst requires more 
communication as the individual matrices calculated by individual threads need to be 
multiplied in the reduction step. As this is the innermost level of parallelization, it is most 
natural to parallelise this using openMP which also simplifies the sharing of matrices. 

Ideally, in order to reduce any load imbalance, we want the runtimes for each experiment 
to be as similar as possible, so that we get the maximum speed-up from performing the log-
likelihood calculation for each experiment in parallel. By benchmarking the runtime of a 
single evaluation of the likelihoods for the individual experiments, we have obtained an 
understanding of how well balanced the load is in these calculations in the first instance 
and have subsequently performed a benchmarking of them with low level parallelization 
applied. 

Measurements of the performance time of a single likelihood calculation for the individual 
experiments in serial implementation were: 5.9 ms, 6.7 ms, 5.8 ms and 4.7 ms 
(benchmarked locally on a Macbook Pro 2.8 GHz QuadCore). We note that while the 
runtimes are of similar magnitude, they still vary significantly. We will return to this 
question of the runtimes of the individual experiments after the OpenMP parallelization. 

 

Figure 1 Example of the distribution of burst lengths in 4 experiments used in a likelihood 
calculation. 



It would be easy to implement the parallelization only at the lower layer, over the 
calculation of likelihood for individual bursts. However, by looking at the histograms of 
bursts length in Figure 1,  it is clear why this is unlikely to work very well. 

In this particular example, two distinct types of experimental records can be identified. The 
first record (Exp 0) consists of a large number (1480) of very short bursts (less than 10 
transitions) while the other three records have much smaller number of bursts (<20) 
consisting of hundreds to thousands of transitions each but with a rather large spread of 
burst-length. This makes it difficult to obtain good load balancing by only relying on the 
parallelization over bursts as the runtime for these experiments will be dominated by the 
few long bursts. 

On the other hand, the parallelization over the matrix multiplication within the individual 
burst is unlikely to yield good results, unless the series of Q-matrix products is significantly 
longer than the number of threads. After benchmarking two different implementations- 
parallelisation over bursts or over intra-burst matrix multiplication- individually, it become 
evident that the parallelization over matrix multiplications results in a significant 
slowdown, if performed for all series with runtime increasing with the number of threads. 
On the other hand the parallelization over bursts results in a significantly smaller speedup 
when the number of bursts is small, as the runtime is completely dominated by the longest 
bursts. 

Thus, we must control which of these parallelisms we use, depending on the problem at 
hand: finding the best parallelisation, while avoiding the unnecessary slowdown from 
attempting to use low levels of parallelism. Note that the optimal solution will depend on 
the properties of the data and the size of the Q-matrix, something that may change in future 
work. 

After a number of experiments, we settled for a solution where we selectively parallelise 
over either the bursts, the matrix multiplications or perform no OpenMP parallelization. 
This is implemented using the standard OpenMP if pragma. 

Based on the current example the likelihood calculation is parallelised over the bursts if 
there are more than 100 bursts in a record. The switch-over is selected to separate 
Experiment 0 in Figure 1  from the rest of the experiments. Better performance may be 
obtained for other datasets by tweaking the switch-over parameter. Then, if the outer loop 
is not parallelised, we call a parallel implementation of the internal matrix multiplications. 
This parallelises the calculation of the matrices, as well as the matrix multiplication. 

As the matrix multiplication is non-commutative, the multiplications must be done in the 
same order. To this end we implemented the parallel multiplication by storing the partial 
matrix products for each OpenMP thread in a C++ std::vector which is subsequently 
multiplied by the initial and final vectors. There is an additional overhead associated with 
the creation of a vector of matrices and the two step matrix multiplication, so we perform 
this in parallel only when the number of matrices to multiply is larger than 100. 

This matrix multiplication is often likely to overflow the standard floating point numbers. 
The existing serial code has a simple functionality to prevent overflow within the matrix 



multiplication. Following each matrix multiplication, the maximum element is found and 
provided that it is larger than 1050, the matrix is divided by 1×1050 and the exponent 
stored separately. 

This simple solution does efficiently prevent overflow in the likelihood calculation, but 
does come with the cost of reduced precision. When the matrix multiplications are 
performed on several threads the final multiplication of individual thread result matrices 
may still overflow even if the maximum element of each matrix is less than 1×1050. 

To prevent this, the new parallel implementation keeps each matrix smaller than 1×1020 
and this is sufficient to prevent an overflow when the calculations are performed within a 
single Archer node (typically using 4-8 OpenMP threads combined with 3-5 MPI processes; 
see below). However, developing a better solution should be considered in the future. 

To summarise, the parallelization using the combined burst and matrix multiplication 
approach described above resulted in runtimes of 2.6 ms, 3.0 ms, 2.8 ms and 2.8 ms for the 
4 experiments respectively (benchmarked locally using 4 OpenMP threads on a QuadCore 
MacBook Pro 2.8 GHz). Relying only on the parallelization of over bursts results in run 
times of (2.5 ms, 3.4 ms, 3.7 ms and 2.7 ms) respectively, with a significantly worse load 
balancing.   

MPI parallelization over experiments. 

As mentioned above, the log-likelihood over individual experimental records can be 
calculated independently. In the existing codebase, the loading of data and individual log-
likelihood calculations are performed in the Python layer of the code. To keep the code 
flexible with respect to loading of data for multiple experiments, we chose to keep this  
loop in the Python layer. We have experimented with multiple high-level parallelization 
solutions in Python. We first implemented the parallelization using IPython parallel 
(http://ipyparallel.readthedocs.io/en/stable/) which is internally based on 
communication using ZeroMQ (http://zeromq.org/). This provides a nice high-level 
interface for the implementation of parallelization over the experimental records. 
However, we found that the communication overhead was too large. When running 
examples on Archer within a single node, roundtrip time for communication was around 1 
ms, which is of the same order of magnitude as the runtime of individual likelihood 
calculations. We did not further explore possible solutions to speed up the communication 
using ZeroMQ. 

Instead we chose to implement the parallelization using MPI and MPI4Py 
(http://pythonhosted.org/mpi4py/), which yielded significantly better performance. The 
resulting speedup can be seen in Figure 1 . 

Improved dynamic memory allocation. 

HJCFIT uses Eigen (http://eigen.tuxfamily.org/) for its linear algebra calculations. Eigen is 
well-regarded, established library that allows us to write modern, readable and highly 
performing C++ code. However, during the profiling of the code for the implementation of 



parallelization in work packages 3, 4 and 5, we found that a significant amount of time in 
realistic examples was spent within memory allocation in Eigen. 

This naturally prompted us to investigate the various options for memory allocation in 
Eigen. Eigen supports either fixed size matrices with size defined at compile time on the 
stack, or dynamic matrices with runtime-defined sizes allocated on the heap. The dynamic 
matrices are allocated at runtime and this results in a significant performance drop. HJCFIT 
heavily uses runtime-defined matrices sizes as internal math is performed on matrices with 
sizes given by the number of open/closed states in the particular model being solved, 
which is naturally a runtime parameter, as it depends on the specific experiment. 

Two solutions for optimising the memory allocation are possible. When refactoring the 
code, it is possible to reduce the number of dynamically allocated matrices by reusing 
already allocated matrices. In the present code, matrices are allocated within the likelihood 
calculation. To refactor this would require significant changes to the codebase. The second 
option is to statically allocate matrices sufficiently large for all relevant problems. Eigen has 
built-in support for dynamic sized matrices with a compile time fixed maximum size. 
Therefore, one can easily define a type of matrices which act fully as dynamic allocated 
matrices, provided that they are smaller than a compile time defined constant.  These will 
then act as drop-in replacement for the existing dynamically allocated matrices. 

Straightforward implementation of this option gave a substantial performance increase. 
However, statically allocating matrices with sizes larger than needed does come at a cost of 
higher memory usage. In the case of HJCFIT the memory requirement is fortunately fairly 
low for models being currently fitted, with a typical single threaded memory usage of less 
than 50 MB. Thus, we were confident in implementing static allocation of matrices in the 
mainline codebase. Initially we chose to allocate matrices with a static size of 50x50. 

However, it is simple to change the size and recompile the code with either a different 
static size or even with fully dynamic memory allocation. Furthermore, verification of the 
number of open and closed states in the model is added, and this ensures that a meaningful 
error message is raised, if solution of a model with too many open and closed states is 
attempted. The performance gain from the static memory allocation can be seen in Figure 
2. The options for dynamic memory allocation can be found in the Eigen documentation 
(https://eigen.tuxfamily.org/dox-devel/group__TutorialMatrixClass.html). 

Benchmarking 

The fitGlyR4.py job, used for benchmarking HJCFIT performance, represents a typical 
example of a maximum likelihood fit. The dataset contains open and shut time intervals 
from four separate single channel records at different agonist concentrations. The first 
record (mentioned as Experiment 0 above) is obtained at low agonist concentration and is 
composed of a large number of short bursts of single or multiple openings. The other three 
records obtained at higher concentrations of agonist contain much smaller numbers of 
bursts. Bursts at high concentration are much longer and are formed of thousands or even 
tens of thousands of openings. This selection of experimental records gives the most 
information about ion channel behaviour and is optimal for understanding channel 



sojourns in different kinetical states across a range of agonist concentrations. The kinetic 
scheme in the script has been successfully used to describe glycine receptor behaviour. The 
scheme incorporates 10 states with 22 rate constants for transitions between the states, 
but it  is constrained by the requirement of maintaining microscopic reversibility, and 
therefore only 14 free parameters are estimated directly. This scheme is of medium 
complexity and more complex schemes (with a number of free parameters up to 27) are 
routinely tested. 

Figure 2 shows the number of likelihood evaluations performed per second by the original 
library, after improved memory allocation and after improved memory allocation, MPI and 
OpenMP parallelization. The improved memory allocation gave a speed-up from 19 to 39.3 
likelihood calculations per second (approximately 2-fold). On top of this, we applied the 
OpenMP parallelization over bursts and matrix multiplications. The OpenMP parallelization 
resulted in a speed-up from 39.3 to 85.9 likelihood evaluations per second when using 6 
threads (approximately 2.2-fold). We noted that the OpenMP implementation does have 
significant overhead when running the calculations on a single thread which drops the 
performance from 39.3 to 35.4 likelihood evaluations using a single thread relative to no 
OpenMP. This is most likely due to the additional overhead of the two step approach, where 
we create a one element vector of partial matrices, which is then multiplied by initial and 
end vectors. 

MPI parallelization over 4 experiments or 4 processes without any OpenMP parallelization 
results in an increase from 39.3 to 119.8 likelihood evaluations per second giving a 3.0-fold 
speedup. We observed that the total speed-up due to parallelization going from purely 
serial code (at 39.2 evaluations per second) to 4 MPI processes and 6 OpenMP threads is 
6.9-fold, but the product of the 2 individual speed-ups given above is only 6.6-fold (2.2 x 3). 
This is due to the improved load-balancing and more similar runtimes of the individual 
experiments when running with OpenMP parallelization. 

Finally, the total speed-up was from 19 to 272.3 likelihood evaluations per second giving a 
total combined 14-fold improvement on a single Archer node. 



 

Figure 2 Benchmark of running fitGlyR4 on one Archer node, showing the number of 
likelihood function evaluations per second. The combined effect of improved memory 
allocation and hybrid parallelisation is a speedup from 19 to 272 function evaluations per 
second, 

Accuracy related changes 

Fortran issues 

The HJCFIT library is a re-write of a previous Fortran 77 code, begun by the UCL team prior 
to this project. We noticed that, despite the identical result obtained for a set of single 
likelihood calculations, the two codes often produced different results for long running 
likelihood calculations. The likelihood is optimised over a multi-dimensional Q-matrix with 
usually more than 10 free parameters and it is expected that the likelihood surface might 
have several local maxima. As the likelihood is evaluated, slight differences in the 
calculation may result in different optimisation pathways being selected and different end-
results obtained. This can be due either to differences in the optimisation algorithm used or 
to differences in the likelihood calculation. While this was not strictly a part of work-
package 6 and 7, we felt it was important to ensure that the code behaves as expected and 
that no new issues were introduced compared with the Fortran code. 

The optimisation is done using a downhill simplex algorithm in both cases. In the new 
library a SciPy (http://scipy.org/scipylib/index.html) implementation of the Nelder-Mead 
algorithm is used whereas the Fortran code base uses its own custom implementation 
which it slightly tweaked for the specific likelihood problem. This might have potentially 
resulted in different maximum likelihoods being obtained: the different optimisation 
algorithms made it more difficult to establish where differences arise in the likelihood 
calculation. To investigate this, we therefore calculated the likelihood manually using both 
implementations focusing on points where the likelihood optimisation diverged. 



We found examples were the log-likelihood values do differ after about 8 to 9 digits. After 
careful inspection of both codebases and interactive debugging to step through the 
implementation, we established that this divergence was due to differences in the floating 
point precision used in the two implementations. While both implementations perform all 
calculations in double precision, the Fortran version used a number of parameters stored 
in single precision which were being automatically cast to double precision during the 
calculation. The value of stored digits beyond single precision is undefined and random: the 
differences in results can therefore be traced to this bug in the Fortran code. 

For example the initial and final CHS vectors (initial and final state occupancies) depend 
exponentially on the temporal resolution (the shortest resolved time interval) and the 
critical time interval used to separate individual bursts. The values of these two parameters 
were cast from single to double precision in the Fortran code. 

Multi-precision 

In a number of cases, HJCFIT log-likelihood calculations failed as a result of floating point 
precision issues. In the existing codebase, this is prevented by the optional use of long-
double floating point numbers rather than regular doubles. This typically gives an extended 
precision from 64 bit floats to 80 bit, but the implementation of long-doubles is compiler- 
and platform-dependent.  Specifically, long-doubles are identical to doubles when 
compiling with MS Visual studio on Windows. In addition, there are two other issues with 
this solution. There is no guarantee that 80 bit long-doubles have sufficient precision to 
resolve all floating point inaccuracies, and re-implementing the entire code using long-
doubles has a significant impact on performance. 

In work-package 7, we therefore implemented an alternative solution. We focused on a 
specific issue where the log-likelihood calculation fails. A root finding is performed as part 
of the approximate survivor function used for missed event correction. This progresses 
through multiple steps, first identifying the upper and lower bounds of all the roots.. 
Subsequently the individual roots are bracketed and exactly identified. It has been 
observed that the root-finding may fail for specific guesses of the Q-Matrix. This may be 
because two roots are within floating point precision of each other or because the 
bracketing or bounds location fails. We identified a particular instance where root finding 
was failing and used it as a test to implement a more robust solution. 

The particular error we investigated happened only when compiling with GCC (not Clang) 
and was sensitive to the exact iteration strategy implemented when the roots are bound 
from above and below. In brief, finding the bounds involves finding the eigenvalues for a 
matrix that depends on the guesses for the upper and lower bounds.   This may fail if the 
matrix is close to being singular. It is therefore in principle possible to avoid this particular 
issue by picking other guesses for lower and upper bounds. However, this is not a robust 
solution as the issue is likely to reoccur during the optimisation process. 

Increasing the numerical precision can resolve the issue but, as argued above, it is too 
computationally expensive to do this in general. We have therefore implemented 
automated fallback to higher precision as suggested in work-package 7. As the existing 



code raises an exception when Eigen fails to find the eigenvalues, it is possible to wrap the 
call to the standard double eigenvalue solver in a try block and calling a multi-precision 
version of the same algorithm. This means that the runtime cost is minimal, as most of 
executions of the code will go through the standard algorithm with only an extra try block. 
The number of likelihood evaluations that will require the expensive multi-precision 
calculations is a small fraction, so little performance is lost in these fall-backs, but this will 
prevent failure of a long running optimisation at random points in the process. 

The evaluations are performed using GNU MPFR (http://www.mpfr.org/) which 
implements multi-precision floating point arithmetic on top of GMP (https://gmplib.org) 
"The GNU Multiple Precision Arithmetic Library" which implements multi-precision integer 
arithmetic. In practice we are using Eigen’s support for multi-precision 
(https://eigen.tuxfamily.org/dox/unsupported/group__MPRealSupport__Module.html) 
which depends on the nice C++ interface to MPFR 
(http://www.holoborodko.com/pavel/mpfr/). 

So far, we implemented multi-precision support only for this specific algorithm, but as 
more specific issues are identified, it will be easy to add multi-precision support in a similar 
way to other specific sections of the code, making the code fall back to the multi-precision if 
needed. We expect all issues caused by floating-point precision to be of the form where an 
exception is raised which can be caught and where fallback to a multi-precision 
implementation is feasible. 

We did not port the entire code to run with GMP and MPFR, as suggested in work-package 
6. Early benchmark of simple operations indicated that this is likely to result in a very 
significant increase in runtime of the order of 10 times or more. Unfortunately, Eigen does 
not yet implement multi-precision for all the linear-algebra algorithms used. Thus, we 
chose to focus on the application of multi-precision to individual functions as explained 
above. 

Note that the code can still be compiled without support for multi-precision on platforms 
that do not support it. GMP is not supported on Windows but MPIR (http://mpir.org/) 
should in principle be a suitable replacement which works on Windows. We have however 
not tested it as part of this project. The code is written in a way that ensures that it can be 
compiled conditionally without multi-precision support and remains supported in this 
form on Windows. 

Minor improvements 

CI on Windows and Travis 

HJCFIT has a fairly extensive test suite implemented directly in the C++ layer and has 
behaviour-driven tests using Behave (http://pythonhosted.org/behave/) in the Python 
layer. At the start of the project the tests were executed on the UCL RSDT Jenkins instance 
(http://jenkins.rc.ucl.ac.uk/) and on an instance of the UCL cluster Legion. However, the CI 
did not test Python3 compatibility and neither did it test the long-double implementation. 



In addition, the code was written to be Windows compatible but was not automatically 
tested on Windows. 

As part of the eCSE project the CI has been extended to Windows on the RSDT Jenkins as 
well as running automatically on Travis-CI (https://travis-ci.org/DCPROGS/HJCFIT). The CI 
run on Travis ensures that the code works with both Python 2 and 3 and compiles with 
long-double support. 

Automatic Documentation build 

At the beginning of the eCSE project, HJCFIT had quite good documentation consisting of a 
user guide written in restructured text using Sphinx (http://www.sphinx-
doc.org/en/stable/) and Python API documentation using Sphinx autodoc 
(http://www.sphinx-doc.org/en/stable/ext/autodoc.html) along with C++ API 
documentation using Doxygen (doxygen.org) and integrated into Sphinx using Breathe 
(http://breathe.readthedocs.io/en/stable/). In addition, the repository contained a 
number of Jupyter (http://jupyter.org/) notebooks demonstrating the use of HJCFIT's 
Python API. An HTML version of the documentation has been manually built and deployed 
to github repository (http://dcprogs.github.io/HJCFIT/). In addition build and installation 
of the code was documented using the github wiki. 

As part of this eCSE project three significant changes were made to the documentation 
infrastructure. 

1. All Jupyter notebooks were moved to the exploration subdirectory of the repository 
where they are automatically executed, converted to restructured text (rst) and 
included in the documentation. This makes it simple to write examples that are 
automatically included in the documentation and can contain prose, code and graphs. 
The automatic execution of notebooks as part of the CI run ensures that examples are 
compatible with both Python 2 and 3 as well as with the long-double build of the code. 

2. The documentation in automatically build and deployed to github pages as part of the 
CI run. Documentation for the latest commit in the master branch is deployed to 
HJCFITmasterdocs (https://dcprogs.github.io/HJCFITmasterdocs/) and 
documentation reflecting the latest commit to the development branch is deployed to 
HJCFITdevdoscs (https://dcprogs.github.io/HJCFITdevdocs/). 

3. The build documentation was transferred from the github wiki into the main 
documentation. 

This implements a part of work-package 9. As work-package 8 was not implemented there 
are no notebooks documenting MCMC. 

Deployment on Archer 

As part of the project some work has been done to streamline and document the 
deployment of the code on Archer. This is part of work-package 1. 



Markov-chain Monte Carlo 

Work-package 8 was not implemented due to lack of time. 

Input/output formats (work-package 10) 

The code is most effectively invoked via Python scripts, providing for effective management 
of IO. 

Documentation (work-package 11) 

The new online documentation at https://dcprogs.github.io/HJCFITmasterdocs/ is 
supplemented by this report along with changes to the documentation reports the changes 
made. We intend to produce a paper describing the improvements to HJCFIT and publish in 
suitable journal. This report will form a base of a first draft. 

Conclusion 

In the scope of this Archer eCSE project we ported HJCFIT to Archer and parallelised the 
code to produce a 14 times speed-up. We have added support for multi-precision floating 
point libraries that solve long standing issues within the code. Furthermore, we have 
streamlined the documentation of the code with additional examples build from Jupyter 
notebooks and automatic deployment. 
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