
eCSE07-15: Optimizing the I/O performance of

OpenFOAM for massively parallel high-fidelity

CFD simulations

Stefano Salvini, Neil Ashton, Ian Bush, Wes Armour

March 2, 2018

Abstract

In this report we detail the work undertaken to develop a parallel I/O
solution for OpenFOAM. We include an analysis of the current state of
the code, the improvements we have made and finally some benchmark
results.

This work was funded under the embedded CSE programme of the
ARCHER UK National Supercomputing Service (http://www.archer.ac.uk)

1 Introduction and Project Description

The aim of this project was to develop a prototype which introduced modern,
parallel, large scale IO into OpenFOAM [1] (http://www.openfoam.org), there-
after referred to as OF. We chose HDF5 [2] as it is widely used in academic as
well as industrial applications.

The large OF user base and their need for continuity,implied that we needed
to propose the following requirements

1. Minimum modifications to the code, no changes in users’ interface, data,
etc.

2. Default behavior exactly as standard OF with optional runtime choice of
OF files or HDF5.

3. Reduce the number of output files, while maintaining the ability to remove
cleanly time dumps already stored (for example, time dumps outside a
“storage window”), this is a facility in OF which we intended to preserve.

4. Simplify users’ editing in the case of restart.

5. Clean compilation using the standard OF mechanisms.

6. Testing on small parallel system.

7. Testing and benchmarking on large systems.

8. Creating a comprehensive GitHub repository, with sources, instructions
and information. The repository can be accessed through github:
https://github.com/stefsal/OeRC OpenFOAM HDF5

1

All have been achieved with the total number of files per checkpoint being
reduced from the number of processors× number of variables to either a single
file or multiple files if processor bunching is used. The following sections describe
the modifications to the code and the results of the benchmarking exercise.

2 Methodology

OF (OpenFOAM) is a comprehensive, flexible, widely used package for CFD
computation. Its flexibility allows users to plan, implement and solve a wide
range of problems problems using “semi-symbolical” definitions. Items such as
discretization and solution methods can be defined transparently, avoiding the
finer details of their implementation. A range of templates, solutions, codes etc.
are also available.

Whilst OpenFOAM has many strengths it’s code design has resulted in some
fundamental weaknesses for I/O.

1. Parallelism is not optimal. OF uses MPI, but MPI is linked internally
within the executable at em run time, rather than at link time. That
implies that MPI facilities in use and their locations in the code are limited,
a sort of MPI “dummy” library is for serial use. The intention was to have
a single executable. However, irrespective of whether OF is called through
mpirun, as MPI is linked in the executable (source level), the execution
parameter ”-parallel”.

2. The point above implies that widely used, third party, advanced parallel
libraries such as PETSci (ANL) cannot be currently used.

3. The OpenFOAM I/O system has several characteristics that make it less
than ideal for HPC systems

(a) At each of NT time dumps (steps) of interest, each of the NP pro-
cesses creates and writes a file for each of the NF quantities required
(e.g., pressure, velocity field, etc.). Thus the number of files cre-
ated is F = Nt · NP · NF . For example, a large-ish scale problem,
with NT = 100, NP = 10000, NF = 20, would generate 20 million
files. This would be, to say the least, impractical in a non-dedicated
large-scale HPC environment.

(b) Objects types, such as scalars, vectors, tensors, matrices etc. are de-
fined in OF, but only accessible at IO time as collections of individual
data items, stripped of any metadata. For examples, when writing a
vector, the length of the vector is not available.

(c) Each individual entry (number) is output independently directly to
an external file. This is very inefficient as no pipelining is possible
and use of full cache lines is denied, thus increasing memory traffic,
etc.

(d) The code is extremely complex. For example, attaching metadata
to the objects values, would be costly and could cause unpredictable
side-effects without in-depth changes to the code.

(e) The mechanism for input data is cumbersome, where each element is
read in character by character then decoded.

2

4. Restarts pose a particular problem. To edit/change the boundaries, files
are consolidated across all processes in a single file. The interior values, the
major portion, are at the top, the boundary values, the smallest portion
at the bottom. As no tools are provided, users need to manually edit the
consolidated file using standard editors: for large problems can be very
large (possibly 100s GBytes). Users’ have reported that this could take a
very long time, if at all practical.

Given initial unavoidable staffing issues, which led to some lost time, we
decided to focus on several achievable targets:

1. Input from files would not be considered, because of its complexity, the
resources it would take and the potential deep modifications of the code.
Reluctantly, we decided that that would also apply to initial data, such as
distributed cells data etc. These files are also fewer, in most cases, than
output files. Future work is however to deliver this functionality.

2. We chose to use HDF5. HDF5 is used by a great number of academic,
industrial and commercial large scale applications in many different fields
and locations.

We proposed the following requirements

1. Minimum modifications to the code, no changes in users’ interface, data,
etc.

2. Default behavior exactly as standard OF with optional runtime choice of
OF files or HDF5.

3. Reduce the number of output files, while maintaining the ability to remove
cleanly time dumps already stored (for example, time dumps outside a
“storage window”), this is a facility in OF which we intended to preserve.

4. Simplify users’ editing in the case of restart.

5. Clean compilation using the standard OF mechanisms.

6. Testing on small parallel system.

7. Testing and benchmarking on large systems.

8. Creating a comprehensive GitHub repository, with sources, instructions
and information. The repository can be accessed through github:
https://github.com/stefsal/OeRC OpenFOAM HDF5

All requirements have been implemented in full:

1. Achieved. Only 6 (six) sources have been modified: (OFstream.C , OF-
stream.H, OSstream.C, OSTreamI.C , OSstream.H and regIOobjectWrite.C
)

2. Achieved. Notice that because of code complexity and in order to avoid
extensive modifications, potentially involving a large number of compila-
tion units, two environment variables have been created to select (details
in github):

3

• Using OF standard or HDF5 files.

• ‘Bunching’ output from processes (see below) to maximize system
throughput.

3. Achieved. Either of two modes of operation can be selected:

All-processes one HDF5 file is written by all processes for each time
stamp for a total number of NT files. In the example above, 100 files
would be created, not 10,000,000.

Bunching Processes are grouped into bunches, of size B to create NP /B
HDF5 files: if in the example, B = 100, then 100*100 = 10,000 HDF5
files would be created.

4. Achieved. Interior and boundary values are now stored separately in
HDF5 files: they can be concatenated trivially to form the original OF file.

5. Achieved: replace the six sources with those in the github repository,
modify two compiler/linker options file then build OF using the standard
scripts/commands. Full instructions are included in the github repository.

6. Achieved: Extensive testing has been carried out.

7. Achieved: Benchmarking has been completed on ARCHER.

8. Achieved: https://github.com/stefsal/OeRC OpenFOAM HDF5 .

2.1 HDF5 implementation

To preserve the possibility of deleting individual time dumps, for example re-
taining only the last few, we needed a suitable structure. In OF, each process
create a separate directory, indexed by process number; there is then a subdi-
rectory for each time dump.
We had two issues in creating a suitable structure:

1. using the process name as an identifier (one HDF5 file for each process)
would create NP HDF5 files, with appropriate structures within, very
much like in OF directories. However, deleting time dumps would not be
straightforward: space would not be recovered, just simply lost. The only
way to recover it would be to ”recompact” the HDF5 file, which is rather
time consuming.

2. The alternative would be storing within each process directory a separate
HDF5 file for each time dump. This, unfortunately, would reduce the
number of files only by a factor NF to NT ∗ NP . In our example, 100 ·
10000 = 1, 000, 000 files would still be created.

• Hence we inverted process name and time dump in the storage structure:
there is an HDF5 for each time dump, and within it all data (datasets)
are grouped by process name. In other words, for each process name, the
data structure is the same. That allows the clean removal of time dumps,
without incurring in the issues at the previous point.

4

(a)
experiments with the same body and recovered the general obser-
vations of Ahmed. This study provided well-defined LDA measure-
ments of mean velocity fields and turbulence statistics at
Re = 768,000 that are used as reference in the present study.

In the literature, a certain number of studies are now available
for the two angles 25! and 35! of the rear slanted surface using
different turbulence modeling approaches. Several of these em-
ployed Reynolds-Averaged Navier–Stokes (RANS) models such as
[10,6,4,29,12]. A review on this topic by F. Menter can be found in
[25]. The cited studies used a large variety of two-equation models,
from the standard K ! !model with wall-function to the K !x ap-
proaches including an algebraic treatment of the Reynolds tensor
(EARSM), and also more sophisticated Reynolds Stresses Models.
The overall conclusion is that while the simulations were relatively
successful in predicting the 35! case, they did not provide satisfac-
tory results for the 25! case. Indeed, for u = 25! the shear due to
the partial detachment of the flow on the upper part of the slant pro-
vides small scale structures, related to a Kelvin–Helmholtz instabil-
ity, which significantly increase the momentum transfer across the
mean streamlines and enhance the three-dimensionality as well as
the unsteadiness of the flow. This type of mechanism is very difficult
to model by RANS approaches so that the predictions at subcritical
angle generally remain unsatisfactory whatever turbulence model
is used. Most of the RANS simulations miss the flow separation at
the rear part or, when they accurately predict the separation onset,
they fail in the massively separated flow regions containing many
coherent structures by mainly underpredicting the level of turbu-
lent stresses [25].

The above remarks suggest that LES may constitute a valuable
way to compute the flow around the Ahmed body, particularly
for subcritical slant angles. The first LES results [16] using a geom-
etry without bottom wall and the Smagorinsky model globally cap-
tured the topology of the flow for a subcritical slant angle u = 28!
but drag estimation and flow field visualizations were characteris-
tics of a flow for u > 30!. Several LES studies [13,14,32,21] showed
that the accuracy of the solution is undeniably improved compared
to the RANS studies. Particularly, the unsteady phenomena are well
described and the solutions almost capture the peak of turbulent
kinetic energy measured at the beginning of the slant.

A fundamental problem with LES, however, is the need to re-
solve the turbulent boundary layer along the roof of the body
which is decisive for adequately capturing the separated shear
layer over the slant. Due to the high Reynolds number it is extre-
mely thin with d " 10 mm or d/L " 10!2, as illustrated in Fig. 11 be-
low. Even if a wall function approach is used as in [13,14], the usual
resolution requirements in streamwise and spanwise direction can

hardly be met. This can impact the resolved turbulent motion in
the shear layer and deteriorate the solution quality.

For this reason, hybrid LES/RANS methods have been applied as
well to this flow. The overall strategy with such an approach is to
model the attached turbulent boundary layer in RANS manner
while LES-type resolution of the large-scale turbulent wake is at-
tempted. Several concepts of hybridization between LES and RANS
exist, as detailed in [8]. In particular, one can distinguish between
segregated approaches, where a sharp interface between a steady
RANS and an unsteady LES is used so that the computed solution
is discontinuous there, and unified approaches where the com-
puted solution is continuous throughout. The latter inevitably
leads to a gray zone between the LES and the RANS region. The
most prominent unified hybrid approach is Detached Eddy Simula-
tion (DES) proposed by Spalart et al. [39]. Indeed, the DES of Men-
ter and Kuntz [29,30] and Kapadia et al. [20] show globally much
better results than the ones provided by RANS approaches. They
resolve in particular for u = 25! the vortical structures in the wake
as well as in the shear layer between the freestream and the recir-
culation but do not recover the partial detachment on the slant.
Mathey and Cokljat [27] presented results for an approach close
to segregated modeling. They performed a RANS simulation for
the entire flow and then added an LES domain which starts right
at the corner of the slant where the flow separates and covers
the wake region. The inflow conditions for this subdomain were
generated from the mean flow of the RANS solution to which syn-
thesized turbulence was superimposed to an amount specified by
the RANS solution and generated by means of a vortex method
[26]. The coupling back to the RANS domain, which distinguishes
an LES with particular inflow conditions from a truly hybrid simu-
lation, is still missing in this paper, but the results presented show
the quality of the solution which can be achieved with this ap-
proach. Indeed, the obtained statistical data capture the measure-
ments very well. Unified approaches on the other hand, if not
employing some type of stochastic forcing, rely on the instability
of the mean flow in the transition between upstream RANS and
downstream LES region. For the Ahmed body this effect is quite
strong so that substantial unsteady motion is created which in turn
can yield results closer to the experiment than those obtained with
(U) RANS methods.

The test case of this paper is the one initially defined in 2001
during the 9th ERCOFTAC Workshop on Refined Turbulence Model-
ling [46] for a body with subcritical slant angle u = 25! at a
Reynolds number of Re = 768,000 (note that in [1] the Reynolds
number is based on the length of the body). Measurements were
performed by Lienhart and Becker [22,23].

Fig. 1. Side, rear and top view of the Ahmed body together with the coordinate system used. Distances are in mm. The slant angle u = 25! in the current analysis.

2 E. Serre et al. / Computers & Fluids xxx (2011) xxx–xxx

Please cite this article in press as: Serre E et al. On simulating the turbulent flow around the Ahmed body: A French–German collaborative evaluation of LES
and DES. Comput Fluids (2011), doi:10.1016/j.compfluid.2011.05.017

(b)

Figure 1: (a) Ahmed car body flow physics and (b) Ahmed car body dimensions

• The HDF5 dataset (filescontents are byte-wise identical to the OF stan-
dard files. Extracting them shows exactly that.

• Using HDF5 does not write the standard OF files and then copy them.
Output is instead written to an internal buffer then streamed in bulk to
HDF5. At no time, unless no HDF5 is not required, are standard OF files
created or written. HDF5 files are written directly from within OF.

• Time constraints prevented us to implement full MPI-parallel HDF5. MPI-
based HDF5 APIs were only available for C and not C++, so all interfaces
to HDF5 would need to be reworked, including any OF data required by
them.

• Currently, we use HDF5 serial in two different modes, as previously men-
tioned:

All-processes one HDF5 file is written by all processes for each time
stamp for a total number of NT files. In the example above, 100 files
would be created, not 20,000,000. As the HDF5 files can only be
written serially, a parallel lock allows only one process at the time
to write the data to HDF5 file. However, the data have been written
to a buffer beforehand, hence the whole buffer is written in one go,
fully using any pipelining that the system can offer.

Bunching Processes are grouped into bunches, of size B to create NP /B
HDF5 files: if in the example, B = 100, then 100*100 = 10,000 HDF5
files would be created.
there is one independent lock per bunch, so bunches can write dis-
joint HDF5 files independently and concurrently. HDF5 file names
now show not just the time but the lowest and highest process num-
ber in the bunch. The network bandwidth can therefore be better
exploited. If bP is the bandwidth from each process to storage, the
total bandwidth used would be bB = max(bP ·NP /B, bN), where BN

is the overall network bandwidth.

3 Benchmarking

To benchmark the code, the Ahmed car body test-case was chosen. The Ahmed
car body [3][4] represents a generic car geometry with a slanted back and a flat
front and has been extensively tested in the literature [5].

5

3.1 Computational grid and boundary conditions

The flow is at a Reynolds number of Re = 768, 000 based on the body height
and the free-stream velocity U∞ = 40ms−1. An inlet condition is imposed at
upstream of the body and an outlet condition is imposed downstream. A no-slip
wall condition is imposed on the ground floor and car body, with slip conditions
applied to the wind tunnel walls.

An unstructured snappyHexMesh generated 13 million cell mesh was used -
for this mesh, the first near-wall cells over the car body had a y+ < 1 and the
refinement was concentrated on the near-wall and separation regions. The time-
step is 0.0002s and the simulation is run for 2s of physical flow-time resulting
in 10,000 iterations.

3.2 Results

The test-case was simulated on ARCHER using the cray-hdf5/1.8.14 HDF5
module and a custom compilation of OpenFOAM 4.1 with the only modifications
being the 6 six sources files mentioned previously. Benchmarking simulations
were conducted on 192 cores (67,000 cells per core) although similar trends
were observed for larger core counts. For each 10 checkpoints were taken but
the timing data is for a single checkpoint. Table 1 shows a breakdown of the
time for each checkpoint together with the number of files.

Time for checkpoint Files Zip one checkpoint
OF Default 1s 38,400 600s

HDF5 (No bunching) 152s 10
HDF5 (Bunches=40) 21s 50
HDF5 (Bunches=20) 6.5s 100
HDF5 (Bunches=10) 3.6s 200 140s
HDF5 (Bunches=2) 3.5s 1000

Table 1: Time and number of files for the checkpoints from different I/O meth-
ods

It can be seen that the HDF5 timing is strongly correlated to the number
of bunches, which is due to the network bandwidth explained in the previous
methodology section. The optimum number of bunches is 10-20 depending
on the desired number of files. All HDF5 solutions produce large reductions
in the number of files, which has the associated advantage of using usability.
It is common to transfer or compress checkpoints after simulations. Working
with fewer files means these times are massively reduced, which outweighs the
increase in the checkpoint during the simulation. Typical simulations don’t
checkpoint more than 10 times so the time to checkpoint is very small compared
to the entire simulation. For the simulation with 192 cores, the total simulation
time to 2s of physical time was 27hrs, whereas checkpoint time was only 36s for
HDF5 (Bunches=10).

6

4 Conclusions

This project has delivered a HDF5 based parallel I/O solution for OpenFOAM.
This new system reduces the number of files by a factor proportional to the
number of processors e.g a 192 core simulation with 10 checkpoints from 38,400
files to just 200. This provides a huge improvement in the usability of the code
for very small increase in total runtime. Whilst the code is fully functional,
further work described below will be pursued to deliver greater improvements.

All codes and instructions are available at https:github.com/stefsal/

OeRC_OpenFOAM_HDF5

4.1 Future work

Some further developments would be:

• Full MPI HDF5 implementation. This would require using C rather than
C++ APIs (OF is written in C++).

• Updating completely both input and output to allow easy access to HDF5
files.

• Developments to allow the use of external high quality libraries such as
the previously mentioned PETSci.

• Tools for quickly editing boundary values files (datasets) for restart.

• Better mechanisms for sleeker and parallel post-processing, accessing HDF5
without consolidating files.

References

[1] Hrvoje. Jasak. Error analysis and estimation for the finite volume method
with applications to fluid flows. PhD thesis, 1996.

[2] The HDF Group. Hierarchical Data Format, version 5, 1997.

[3] S. R Ahmed, G Ramm, and G Faltin. Some salient features of the time
averaged ground vehicle wake. SAE-Paper 840300, 1984.

[4] H Lienhart and S Becker. Flow and turbulent structure in the wake of a
simplified car model. SAE, 01(1):0656, 2003.

[5] N Ashton and A Revell. Key factors in the use of DDES for the flow around
a simplified car. International Journal of Heat and Fluid Flow, 54:236–249,
2015.

7

https:github.com/stefsal/OeRC_OpenFOAM_HDF5
https:github.com/stefsal/OeRC_OpenFOAM_HDF5

	Introduction and Project Description
	Methodology
	HDF5 implementation

	Benchmarking
	Computational grid and boundary conditions
	Results

	Conclusions
	Future work

