
Massively Parallel MPI Implementation of the SPH Code

DualSPHysics

Athanasios Mokosa, Benedict D. Rogersa

School of Mechanical, Aerospace and Civil Engineering,

University of Manchester, Manchester, M13 9PL, UK

Abstract

This report covers the implementation of Message Passing Interface (MPI) and the

Zoltan library in the Smoothed Particle Hydrodynamics (SPH) code DualSPHysics

in preparation for massive parallelisation. The implementation was performed in

two stages. During the first stage a new buffer system was developed to allow for

asynchronous communication between nodes and data handling was altered to

allow for a minimised memory footprint (Workpackage 1). The asynchronous

communications were used to overlap node communication with the particle

computation minimising idle time. A geometric domain decomposition scheme

was created based on domain slices along the main axis. The scheme was used to

create a data exchange system between nodes which was used both for creating

the neighbour list and for identifying particles moving between nodes

(Workpackage 2). The second stage of the project was the integration of the Zoltan

library including its communication module and the Hilbert space-filling curve to

create a cell map while maintaining spatial locality (Workpackage 3).

Introduction

Smoothed Particle Hydrodynamics (SPH) ([1], [2]) is revolutionising the field of

hydrodynamics simulations where its meshless nature implicitly captures the

nonlinear deformation of violent motions, such as wave breaking, and obviates the

requirement for expensive meshing. SPH is rapidly approaching maturity and is

continually developing offering the stability, adaptability and accuracy required

in real engineering applications.

The existing DualSPHysics code [3] is one of the most widely used open-source

SPH software for these applications with thousands of downloads. DualSPHysics

can be run on either a multi-core central processing unit (CPU) or a graphics

processing unit (GPU) and is therefore a CPU-GPU code: the flow is simulated

either with a CUDA-enabled GPU or with an OpenMP C++ code. Most of the current

research, however, has focused on developing the GPU functionality. Taking

advantage of a massively parallel architecture with the C++ code, although

optimised for use in a single node currently is unsuitable for use beyond small

applications. This limits the uptake and applicability of the software as many users

in industrial companies who have not invested in GPUs have access to traditional

high-performance computing (HPC) clusters.

SPH has already been proven suitable for large-scale MPI applications. Oger et al.

[4] and Guo et al. [5] have created MPI SPH codes applicable to thousands of cores.

Their main difference is the domain decomposition method: Oger et al. [4] use the

Orthogonal Recursive Bisection method [6] while Guo et al. [5] use the Hilbert

Space Filling Curve (HSFC) [7]. For this project, the HSFC will be used for domain

decomposition; its selection was based on the relative simplicity of its algorithm

and the spatial locality maintained when storing memory values. The latter is

particularly important for SPH computations as a neighbour searching algorithm

is used.

Work Phases

The original project was planned in three phases:

Phase 1: Implementation of MPI functionality to existing DualSPHysics code

Phase 2: Implementation of non–structured (asynchronous) communications.

Phase 3: Improvement of code scaling for thousands of nodes

Phase 4: Application and Dissemination

In this report, a brief introduction to SPH and DualSPHysics will be given. The

implementation of MPI and different domain decomposition systems (geometric

and HSC) will be detailed. The report will then focus on the algorithms for

overlapping communications, particle and halo exchange. Computational and

runtime results will be presented.

SPH and DualSPHysics

As a Lagrangian method, Smoothed Particle Hydrodynamics (SPH) is a Lagrangian

method that simulates a domain as a set of particles. Function values for each

particle are calculated through an interpolation with a weighting function,

referred to as a smoothing kernel W. The weighting depends on the pairwise

particle distance and is controlled by a distance referred to as the smoothing

length h.

d, rrrr AhWA (1)

where A is a function, r is a position vector, Ω is the interpolation domain, and

represents the SPH approximation. In a discrete SPH form, this is approximated as

([8],[9]):

j

j

j

N

j

j

m
AhWA

1

,rrr (2)

where N is the number of neighbouring particles within the kernel radius 2h and

mj/ρj is the volume of the neighbouring jth particle with m being the mass and ρ

the density of the particle.

SPH is used here to simulate flows described by the Navier–Stokes equations for

continuity and momentum. In Lagrangian form, these equations are:

Continuity: u.
d

d

t
 (3)

Momentum: ug
u

11

d

d
 op

t

 (4)

where ρ is density, o is laminar viscosity, u is velocity, p is pressure, g is the

gravity vector and t is time. Variationally consistent forms of the velocity

divergence and pressure gradient are used to derive the SPH approximation of the

Navier-Stokes equations [10]:

Continuity:

j j

j

ijijii
i

m
W

t

d

d
uu (5)

Momentum:

j

ijiij

ji

ji

j
i W

pp
m

t

d

d

u
 (6)

An additional equation is needed to link the density and pressure and close the

equations.

In addition to the main equations described above, the code used in this report,

DualSPHysics, includes several additional models, including viscosity models, a

density diffusion model, a symplectic and a Verlet time stepping scheme while

boundaries are modelled using the dynamic boundary model [3].

Figure 1: Cell linked list

DualSPHysics is an open source hardware accelerated Smoothed Particle

Hydrodynamics code developed for solving free surface flow problems and

released under the terms of GNU Lesser General Public License (LGPL). It consists

of a set of C++, CUDA and Java codes. A more detailed description of the code can

be found in [3].

Of particular relevance for this project for this report is the internal structure of

the code. The code can be split in 3 main steps: the Neighbour List (NL), the Force

Computation (FC) and the System Update (SU). The NL step uses a Cell-Linked-

List (CLL) method described in more detail in [11]. In this method, the domain is

divided in square cells of side 2h as shown in Figure 1 where each cell has a global

ID number. A particle list according to the cell they belong is then created which

is used to reorder the variables. A cell list is not created as neighbouring cells can

be immediately computed as the domain division is geometric. The algorithm can

be seen in Figure 1.

Figure 2: Flow diagram showing the base CPU implementation in DualSPHysics where the repeating key

steps taking place on the GPU: generation of the Neighbour List (NL), Force Computation (FC) for the

Particle Interaction, and System Update (SU)

The particle list is then used during the FC step to identify particles of the same

and adjacent cells. The particle interaction then occurs between these particles

rather than the entire domain. Finally, during the SU step variable arrays are

Figure 1: Example of the Cell-linked List using 2h×2h cells

2h

Cell
Neighbour Search

Area

2h Neighbouring

Particles

Particle

Interaction

System

Update
Neighbour

List

Initial

Data
Save Data

(occasionally)

updated with the new values. A schematic of the implementation can be seen in

Figure 2.

MPI implementation

DualSPHysics can be compiled either for CPU or GPU. The GPU implementation is

based on the CUDA/C++ extension while for the CPU the C++ language with

OpenMP directives is used. There is however, a large difference in the capabilities

of the two implementations stemming from the degree of parallelisation available

in each. For the GPU, over 500 CUDA cores are commonly available; in comparison,

8-16 CPU cores per node are usually available through OpenMP. While CUDA cores

are have less computational power individually, the greater numbers and degree

of parallelism create the gap in performance [12].

The introduction of MPI in DualSPHysics, the main objective of Workpackage 1

(WP1), is expected to bridge this gap in performance. A hybrid OpenMP-MPI

implementation will be preferred, with the MPI handling communications

between nodes and OpenMP handling communications between cores within a

node. As all SPH data are on shared memory, there is no need for explicit data

exchange between OpenMP processes.

The integration of MPI necessitated the creation of a new buffer system to enable

internode communications and data exchanges. An example of data exchange is

shown in Figure 3. Several files were altered and new files were created; Table 1

shows the source files created or heavily altered and their function. Appropriate

header files ware also constructed.

if(Rank_MPI){ //-Only for root
 DataSendAnyMPI mpisend(Rank_MPI); //-Create buffer for sending data
 unsigned sbegin=0;
 for(int c=0;c<Size_MPI;c++){ //-Send information to all nodes.
 if(c){
 mpisend.AddDataUint(nslices); //-Pack unsigned integer to buffer
 mpisend.Send(TAG_EXAMPLE,c,Log_MPI); //-Send data with tag
 }
 else NumSlices=nslice; //-Store data for root
 }
}
else{ //-Not the root process
 DataRecvFixedMPI mpirecv(Rank_MPI,0); //-Buffer to receive data
 mpirecv.Recv(TAG_EXAMPLE,Log_MPI); //-Receive tagged data
 NumSlices=mpirecv.UnpackDataUint(); //-Unpack unsigned integer
}

Figure 3: Example of send-receive data process within DualSPHysics.

Filename Function

BalanceMPI.cpp
Load Balancing using 1D
decomposition algorithm

BufferMPI.cpp
Functions to assist with sending and

receiving buffer data
 CellDivCpuMPI.cpp

(replaces JCellDivCpuSingle.cpp)
Cell division, particle reordering and

neighbour list creation

DataBuffMPI.cpp
Functions for buffer creation and data

handling

DataCommMPI.cpp
Implements the necessary functions

for data transfer between MPI
processes

HostMPI.cpp
Obtains information on the available

nodes for the MPI process

InfoMPI.cpp
Implements class InfoMPI for file

HostMPI.cpp

ObjectMPI.cpp
Handles tags for sending and

receiving data
ParticleLoadMPI.cpp

(replaces JPartsload4.cpp)
Loads data from input files

SliceMPI.cpp
Creates slices for the 1D

decomposition algorithm. Handles
initial decomposition.

SphCpuMPI.cpp
(replaces JSphCpuSingle.cpp)

Main DualSPHysics file, oversees all
operations. Also integrates the Zoltan

library.

SphHaloMPI.cpp
Identifies particles belonging to the

halo and exchanges data

SphMPI.cpp
Contains helper functions for

SphCpuMPI.cpp. Also implements
particle exchange.

Table 1: Function of new files for the integration of MPI within DualSPHysics

Spatial decomposition algorithms

The efficiency of a parallel code greatly depends on maintaining a similar

workload across nodes. This is achieved by assigning different parts of the domain

(referred to as sub-domains) to different nodes. The simplest such algorithm is

one dimensional: the domain is divided across its largest physical dimension in

parts with 2h width, referred here as slices [13]. Its implementation, along with

the development of overlapping communications (covered in a later section) is the

main objective of Workpackage 2 (WP2).

AllocSliceMemory(NParticles,NumSlices); //-Allocate slice memory based on the
number of particles and slices
if(NLocalParticles){ //-if particles have been loaded in the node from the
file, copy particle position data to prepare for decomposition struct
 memcpy(SlicePos,loadpart->GetPos(),sizeof(tdouble3)*NLocalParticles);
}
const unsigned cel;
for(unsigned p=0;p<ParticleCount;p++){ //-Loop over all local particles
 switch(DivAxis){ //-Identify decomposition axis
 //-Find the slice this particle should be sent
 case 0: cel=unsigned((SlicePos[p].x-MinPos.x)/CellSize); break; //-x
 case 1: cel=unsigned((SlicePos[p].y-MinPos.y)/CellSize); break; //-y
 case 2: cel=unsigned((SlicePos[p].z-MinPos.z)/CellSize); break; //-z
 }
 if(cel>=NumSlices)RunException(met,"Particles outside valid domain.");
 SlicePart[p]=cel; //-Store slice ID for the particle
 //-Store number of particles in the slice

 if(SliceIdp[p]<(NLocalParticles))Slice[cel]++;
}

Figure 4: Algorithm for domain decomposition in slices.

The resulting slices are then assigned to the different nodes with each node having

the same number of slices after the initial split. The slice of each particle (arrays

temporarily loaded on host) is then identified (as shown in Figure 4) and its data

are sent to the appropriate node. Data reordering and cell creation are then done

in each node independently using the same algorithms as the original

DualSPHysics code.

It is clear that in the majority of cases, nodes will not have an equivalent number

of particles, as the number of particles in each slice will be different. To balance

the load in each node, slices can be moved from one node to the other. This load

balancing method, however, cannot be used for larger cases as it does not provide

a fine level of control for cases where the particle distribution varies across the

domain. This is particularly important for the free surface cases this project is

aimed at simulating. A better indicator for this case would be retaining a similar

number of particles across nodes as their number is directly linked to the number

of neighbours and therefore to the number of computations [4].

This can be achieved by using a multidimensional spatial decomposition and load

balancing method such as the Hilbert Space Filling Curve (HSFC). The HSFC is a

variation of the Peano curve which maps all points in a 2-D or 3-D (or higher) area

along a continuous curve. This method has already been used for SPH in previous

eCSE reports for an incompressible SPH code [5]. Its implementation in

DualSPHysics is the main focus of Workpackage 3 (WP3).

The points to create the HSFC mapping for DualSPHysics will be the cells of size

2h instead of the SPH particles. This will allow us to reuse the optimised CLL

system to map the particles and facilitate identify neighbours without creating a

global cell list. The static position of the cells, unlike the particles’ rapid movement

is also an advantage.

This algorithm will be used multiple times over the course of the simulation to

account for fluid movement and differences on node workload. This will also make

use of the cells: a new array CellWeight will identify the ratio of particles in each

cell over the total amount of particles.

t

pc

N

N
pCellWeight)((7)

where Npc is the number of particles in the cell and Nt is the number of particles

in the simulation. Node workloads can then be identified by summing CellWeight

for all local cells; if the imbalance among loads increases (greater than 20%) the

load balancing algorithm will then be applied.

The HSFC algorithm is not be newly coded. Instead, the existing Zoltan library is

integrated into DualSPHysics. This library is used for the development and

optimization of parallel, unstructured and adaptive codes and is scalable for up to

106 cores. It also includes an unstructured communication package

(Zoltan_Migrate) and a distributed directory algorithm to handle large data.

Neither of these are currently in use but they should prove useful tools as the

number of cells increases.

//-Declare Zoltan structures
struct Zoltan_Struct *cell_Z;
Zoltan_Data DataZ;
//-Load particle data from input files and perform an initial decomposition
using slices
Load_Particle_Data();
Initial_Slice_Decomposition();
Initial_Cell_Divide();
//-Get Cell id, node data and cell weights
CellDiv_MPI->GetLocalCellID(DomCells);
CellDiv_MPI->GetCellNodeList(AxisDiv,MinPos,DomainCells,Rank_MPI);
CellDiv_MPI->GetCellWeights(NumLocalCells,NCells);
//-Set Zoltan parameters and create data structure for Zoltan
cell_Z=Zoltan_Create(MPI_COMM_WORLD);
Set_Zoltan_Parameters();
DataZ=Set_Zoltan_Variables;
//-Set necessary variables for load balancing
Zoltan_Set_Num_Obj_Fn(cell_Z, Get_Cell_Number, &DataZ); //-Number of cells
Zoltan_Set_Obj_List_Fn(cell_Z, Get_Cell_List, &DataZ); //-List of cells
Zoltan_Set_Num_Geom_Fn(cell_Z, Get_Num_CellCoord, &DataZ); //-Number of
coordinates (2 for 2D and 3 for 3D)
Zoltan_Set_Geom_Multi_Fn(cell_Z, Get_CellCoord, &DataZ); //-Cell coordinates
Zoltan_Set_Obj_Size_Fn(cell_Z, Get_DataSize,&DataZ); //-Data size
Zoltan_Set_Pack_Obj_Fn(cell_Z, Pack_Data,&DataZ); //-Zoltan packing algorithm
Zoltan_Set_Unpack_Obj_Fn(cell_Z, Unpack_Data,&DataZ); //-Unpacking algorithm

Figure 5: Zoltan setup structure

//-Main load balancing function
errcode = Zoltan_LB_Partition(cell_Z, //-input(all other fields are output)
 &ChangePartitionZ,//-1 if partitioning was changed, 0 otherwise
 &Num_GID_Entries,//-Number of integers used for a global ID
 &Num_LID_Entries,//-Number of integers used for a local ID
 &Num_Import, //-Number of cells to be sent to this node */
 &Import_Global_GIDs,//-Global Cell IDs to be sent to this node
 &Import_Local_GIDs, //-Local Cell IDs to be sent to this node
 &Import_Procs,//-Source of each imported cell
 &Import_To_Part,//-New partition for each incoming cell (not used)
 &Num_Export,//-Number of cells sent to other nodes
 &Export_Global_GIDs,//-Global Cell IDs to be sent to other nodes
 &Export_Local_GIDs,//-Local Cell IDs to be sent to other nodes
 &Export_Procs,//- Nodes exported cells are sent to
 &Export_To_Part);//-Partition for exported cells(not used)
if (errcode != ZOLTAN_OK){
 MPI_Finalize();
 Zoltan_Destroy(&cell_Z);
 RunException(met,"Cell partition has failed");
}
NumLocalCells=NumLocalCells+Num_Import-Num_Export;//-New local cell count
//-Update arrays containing cell data
Update_LocalCellList(Num_Import,Import_Global_GIDs,
 Num_Export,Export_Global_IDs);
Update_CellNodeList(Num_Import,Import_Global_GIDs,Import_Procs,

 Num_Export,Export_Global_IDs,Export_Procs);
//-Identify particles that have been moved and send data to relevant node
Transfer_Particle_Data(CellNodeList,LocalCellList,Import_Procs,Export_Procs);
Cell_Divide();//-Reorder new cell data

Figure 6: Zoltan load balancing implementation

The integration of Zoltan is currently focused on the implementation of the HSFC.

Figure 5 shows the setup algortim for using the Zoltan library while Figure 6

shows the setup procedure for the load balancing algorithm (which is only

executed at the beginning of the simulation), while two new integer arrays are

created to handle the HSFC data:

a) The CellNodeList array with size Ncells (total number of cells across

domain) which will store the current node of each cell. It will be used for a

more efficient identification of the neighbour cells. It is expected that as the

number of cells increases, its efficiency will be decreased and the

distributed datax directory functions will need to be used.

b) The LocalCellList array with size NLocalCells (number of cells on the node)

which maps the cells used by the Zoltan library to the DualSPHysics

CellPart array which holds the reordered particle data and the cells to

which they have been assigned.

The use of an intermediate array (LocalCellList) between Zoltan and DualSPHysics

is necessary due to the different size of the arrays used, as the internal. Its use

could be avoided if particle reordering is altered to follow a Hilbert curve. The

HSFC maintains spatial locality which is beneficial for interpolation methods,

however, the current reordering system is the initial DualSPHysics algorithm

through the CellPart array.

It should be noted that both decomposition algorithms currently apply to every

cell in the domain. As mentioned, this is a major problem for the 1D method. For

the HSFC algorithm, while it will assign empty cells to nodes with lower workload,

this is still an insufficient use of resources. An improvement for further releases

would be identifying void cells so they can be ignored.

Particle and halo exchange systems

Figure 7: Border between two processes. The shaded area is the cells that need to be checked for the

particle and halo exchange. Figure (a) shows the area required for the 1D domain decomposition and

figure (b) shows the irregularly shaped subdomains created by the HSFC.

(a) (b)

There are two major instances on which nodes need to exchange particle data:

(i) when a particle moves between nodes,

(ii) when the SPH interpolation requires particle data from other nodes.

These exchanges involve the edge of the sub-domain, the area within a distance

2h from the sub-domain boundary. This area is also referred to as the halo [13].

The 2h size is selected to be the same as the size of the cells; this guarantees that

particles outside of the halo will not be involved in any exchanges as the adaptive

time step criteria [3] ensure that changes in particle position are smaller than 2h.

An example of the cells and particles included in the halo can be seen in Figure 7

for both decomposition methods.

To address particles moving through nodes, a process referred heretofore as

particle exchange, it is necessary to identify the dimensions of the sub-domain. For

the slice method, this is relatively simple: the position of the slices is inherently

known as they are of size 2h (one slice forms the edge). Therefore, by storing the

minimum and maximum ID of the slices in the node (two integer numbers) it is

possible to easily identify the sub-domain dimensions and compare them to the

particle position.

Since the nodes created by the HSFC do not have a clear geometric shape, their

basic unit, the cells (also of size 2h) will be used to identify the sub-domain

dimensions. A new array, edgecell is used to identify cells belonging in the edge of

the sub-domain by checking whether its neighbours are in the LocalCellList.

Particles in these cells are then checked against the cell dimensions and if they

have moved out, their new cell (identified by the particle position) is checked

against the LocalCellList. Data is then transferred to the new node if needed. At the

time of writing this algorithm has not yet been completed.

 //-Send halo to neighbouring processes
ObjectMPI::StDatMPI_HaloParts HaloSend; //-Create packing array
ObjectMPI::StDatMPI_HaloParts HaloRecv; //-Create unpacking array

//-Identify and send cells and particles to particular processes
for (int iprocess; iprocess<NeighbourProcesses; iprocess++;){
 CellDiv_MPI->GetHalo(iprocess, EdgePart, CellNodeList, LocalCellList,
edgecell, HaloSend, Pos, VelRhop, IdPart);
 SendHalo->AddData(HaloSend[iprocess],
sizeof(ObjectMPI::StDatMPI_HaloParts));
 SendHalo->Isend(TAG_HALOPARTS,Log_MPI);
 }

//-Update Pressure Values for all particles
PreInteraction_Forces(tinter);

//-Compute forces for interior cells
Interaction_Forces(InPart, CellDiv_MPI->GetInCells(), CellDiv_MPI-
>GetCellDomainMin(), CellPart, Pos, VelRhop, IdPart, Press, Viscdt, DRho,
Accel);

//-Receive halo data and compute necessary forces
SphHalo* halo; //-Create structure to hold Halo data

for(int iprocess=0;iprocess<NeighbourProcesses;iprocess++){
 Recv->Recv(TAG_HALOPARTS,MPI_ANY_SOURCE,Log_MPI);
 const int halosender=Recv->GetSource();
//-Unpack Halo Data.
 Recv->UnpackData(&HaloRecv,sizeof(ObjectMPI::StDatMPI_HaloParts));
 const unsigned newnp=halo->GetNp(); //-New particles added
//-Adjust particle arrays with new data
 if((Np+newnp)>MaxParticles){ //-Increase allocated memory if needed
 MaxParticles+=newnp;
 ResizeCpuMemoryParticles(MaxParticles);
 }
 halo->ConfigParticleData(Np, EdgePart, HaloRecv, newnp, IdPart, Pos,
VelRhop);
//-Prepare halo cells for computation
 CellDiv_MPI->PrepareHaloCells(halo->GetCellDomainHalo(), halo-
>GetNcells(), halo->GetHaloCells(), LocalCellList, Np, newnp);
}

//-Compute forces for exterior cells
Interaction_HaloForces(EdgePart, CellDiv_MPI->GetOutcells(), CellDiv_MPI-
>GetCellDomainMin(), CellDiv_MPI->GetHaloCells(), CellPart, Pos, VelRhop,
IdPart, Press, Viscdt, DRho, Accel);

Figure 8: Code example showing the implementation of the halo exchange algorithm and overlapping

communications

Apart from the particle exchange, data also have to be exchanged during the SPH

interpolation when the neighbouring particles belong to another sub-domain. This

is the case for all particles in the halo, whose neighbouring cells include the halo

of the neighbouring sub-domains (as the halo size has been selected to be the same

as a cell). This instance will be referred as the halo exchange [13] and requires

transferring all the particle data within the halo. Figure 8 shows the

implementation of the halo exchange algorithm within the force computation

function.

For the one dimensional decomposition, the neighbouring nodes are inherently

known, as are their minimum and maximum slice IDs (stored for the particle

exchange). Therefore, identifying the relevant cells is not complicated. The halo

exchange is more complicated for the HSFC, where neighbouring cells could be in

multiple nodes. The use of the stored CellNodeList array however, allows us to

identify the nodes the neighbouring cells belong to and transfer the relevant data

through the LocalCellList array and the particle list. To reduce computations, only

cells contained in the edgecell array will be considered. At the time of writing, this

algorithm has not yet been completed.

Figure 9: Overlapping communications for particle exchange.

It is clear from the algorithms described above, that the particle and halo

exchanges only affect data at the halo of the sub-domain. It is then possible to

utilise asynchronous communications to overlap node communications with the

particle computation minimising idle time. This can be done for both

decomposition methods and is part of WP2. To achieve this, the particle list is

divided in two arrays by identifying whether their current cell belongs to the halo

or the inside of the domain by the processes (slice ID and the edgecell array)

described above. The new arrays are referred to as EdgePart for the particles in

the halo and InPart for the remainders.

For the particle exchange, particles in the EdgePart array are checked against the

subdomain dimensions and any transfers are done using the data exchange

algorithm shown in Figure 3. While the process waits to receive displaced particle

data from others, the neighbour list for the inside particles can be updated. The

received data is then added in the EdgePart array to update the neighbour list. A

similar procedure can be followed for the halo exchange and SPH computation.

Figure 9 shows the algorithm for particle exchange while Figure 8 shows the code

dealing with halo exchange. The halo exchange follows the same steps except

instead of displaced particles the data of the halo particles is transferred. This

algorithm is not completed for the HSFC method and is not optimised for the 1D

decomposition.

Results and discussion

The methods and algorithms described previously lead to the creation of two

codes: a lightweight code suitable for execution in 100 cores with the one

dimensional domain decomposition (Deliverable 1) and a more efficient code with

the integration of the Zoltan library and the HSFC (Deliverable 2). Of particular

interest for this report is the performance of the new codes.

(a)

(b)

Figure 10: Runtime results and parallel efficiency compared to a single partition for the code using the 1D

decomposition algorithm. Each partition is a single processor using 6 cores through OpenMP.

Westmere Xeon X5650 - 2.66GHz (2x6-core)
Sandy Bridge Xeon E5-2640 - 2.5GHz (2x6-core)
Ivy Bridge Xeon E5-2650 v2 – 2.6GHz (2x8-core)
Haswell Xeon E5-2690 v3 – 2.6GHz (2x12-core)

Table 2: CPU processors used for the runtime results.

For the first code, runtime results have been produced. A still-water case with

700,000 particles was used to minimise variation in the results. The case was

executed with different processors to look at the effect of different hardware on

the parallel efficiency and execution time of the simulation. Figure 10 shows the

runtime results and the weak parallel efficiency, computed through Equation 9 for

different processors, outlined in Table 2.

 %100
1Pt

t
E

p

p (8)

In Equation (9), Ep is the weak parallel efficiency, P is the number of processes, tp

is the runtime of an individual process in a simulation with P processors and t1 is

the runtime of a simulation with a single process. The results show a clear

reduction in runtime when using multiple processes and the efficiency results

show that the multiple processes are utilised close to their ideal capability. A small

drop can be observed for the Ivy Bridge simulation when increasing the number

of cores. An investigation identified that the reason is the use of the MPI_Allreduce

function for identifying and transmitting the minimum time step to all processes.

For the code with the Zoltan library, since the implementation of the particle and

halo exchange systems have not been completed it is not possible to produce

runtime results. It is however, still possible to investigate the partition of the

domain with the HSFC algorithm. The still-water case is not ideal here as the

domain, filled with particles, is evenly divided by slices. Instead, a dam break case,

where the majority of the domain is void will be used.

Figure 11 and Figure 12 show the decomposition of the dam break domain by both

algorithms used. For clarity, only 8 processes have been used. The HSFC algorithm

concentrates the processes to the cells containing the water particles with the void

area handled by one or two processes due to the use of the CellWeight array for

load balancing. The geometric decomposition of the slices, on the other hand uses

three of the processes for the upper area of the domain, where there are no water

particles at the moment. As a result, the available resources are much more evenly

distributed for the HSFC algorithm.

Limitations and Incomplete Progress

The lightweight parallelised version of DualSPHysics has been completed and

scales well up to 100 cores. In terms of other open-source SPH codes available,

this does not represent a step forward in the state-of-the-art. It is disappointing to

inform the funders that the time allocated to all the tasks originally planned for

the entire project were clearly over optimistic. As mentioned throughout the text,

the deliverables outlined for this project have not been completed. The main

reason is that the complexity and time needed for the phases outlined in the

proposal was underestimated. Phases 1 and 2 required 10 months to reach their

current point with Deliverable 1 not being optimised, leaving insufficient time to

complete Phase 3 and Deliverable 2. We estimate and additional 6 months would

be needed to complete Phase 1-3. This means that the massively parallel code

intended for use over 1000s of cores is not complete and does not run. Our

intention is still to complete this work but it will have to be completed post project.

Dissemination

The work was presented at the 3rd International DualSPHysics Users Workshop

in November 2017 with a positive reception.

Figure 11: Cell decomposition of a 2D domain using the slice method (left) and the HSFC algorithm

(right). The shaded area is the initial position of the water.

Figure 12: Cell decomposition of a 3D domain using the HSFC algorithm

[1] R. A. Gingold and J. J. Monaghan, "Smoothed Particle Hydrodynamics -
Theory and Application to Non-Spherical Stars," Monthly Notices of the
Royal Astronomical Society, vol. 181, pp. 375-389, 1977 1977.

[2] L. B. Lucy, "Numerical Approach to Testing of Fission Hypothesis,"
Astronomical Journal, vol. 82, pp. 1013-1024, 1977 1977.

[3] A. J. C. Crespo, J. M. Dominguez, B. D. Rogers, M. Gomez-Gesteira, S.
Longshaw, R. Canelas, et al., "DualSPHysics: Open-source parallel CFD
solver based on Smoothed Particle Hydrodynamics (SPH)," Computer
Physics Communications, vol. 187, pp. 204-216, Feb 2015.

[4] G. Oger, E. Jacquin, M. Doring, P. M. Guilcher, R. Dolbeau, P. L. Cabelguen, et
al., "Parallel hybrid CPU/GPU acceleration of the 3-D parallel code SPH-
flow," presented at the 5th international SPHERIC Workshop, Manchester,
UK, 2010.

[5] Guo, X., Rogers, B.D., Lind, S.J., Stansby, P.K., 2018, New massively parallel
scheme for Incompressible Smoothed Particle Hydrodynamics (ISPH) for

highly nonlinear and distorted flow, Computer Physics Communications, in
press, doi: 10.1016/j.cpc.2018.06.006.

[6] G. C. Fox, "A Graphical Approach to Load Balancing and Sparse Matrix
Vector Multiplication on the Hypercube," New York, NY, 1988, pp. 37-61.

[7] D. Hilbert, "Über die stetige Abbildung einer Linie auf ein Flächenstück,"
Mathematische Annalen, vol. 38, pp. 459-460, 1869.

[8] J. J. Monaghan, "Smoothed particle hydrodynamics," Reports on Progress in
Physics, vol. 68, pp. 1703-1759, Aug 2005.

[9] D. Violeau and B. D. Rogers, " Smoothed particle hydrodynamics (SPH) for
free-surface flows: past, present and future," Journal of Hydraulic Research,
vol. 54, pp. 1-26, 2016.

[10] A. Colagrossi and M. Landrini, "Numerical simulation of interfacial flows by
smoothed particle hydrodynamics," Journal of Computational Physics, vol.
191, pp. 448-475, Nov 1 2003.

[11] J. M. Dominguez, A. J. C. Crespo, M. Gomez-Gesteira, and J. C. Marongiu,
"Neighbour lists in smoothed particle hydrodynamics," International
Journal for Numerical Methods in Fluids, vol. 67, pp. 2026-2042, Dec 30
2011.

[12] A. C. Crespo, J. M. Dominguez, A. Barreiro, M. Gomez-Gesteira, and B. D.
Rogers, "GPUs, a new tool of acceleration in CFD: efficiency and reliability
on smoothed particle hydrodynamics methods," PLoS One, vol. 6, p. e20685,
Jun 13 2011.

[13] D. Valdez-Balderas, J. M. Dominguez, B. D. Rogers, and A. J. C. Crespo,
"Towards accelerating smoothed particle hydrodynamics simulations for
free-surface flows on multi-GPU clusters," Journal of Parallel and
Distributed Computing, vol. 73, pp. 1483-1493, Nov 2013.

