
A parallel algorithm for Hamiltonian matrix
construction in electron-molecule collision calculations:

MPI-SCATCI

Ahmed F. Al-Refaie,a, Jonathan Tennysona

aDepartment of Physics & Astronomy, University College London, Gower Street, London
WC1E 6BT, United Kingdom

Abstract

Construction and diagonalization of the Hamiltonian matrixis the rate-limiting
step in most low-energy electron – molecule collision calculations. Tennyson (J
Phys B, 29 (1996) 1817) implemented a novel algorithm for Hamiltonian con-
struction which took advantage of the structure of the wavefunction in such calcu-
lations. This algorithm is re-engineered to make use of modern computer archi-
tectures and the use of appropriate diagonalizers is considered. Test calculations
demonstrate that significant speed-ups can be gained using multiple CPUs. This
opens the way to calculations which consider higher collision energies, larger
molecules and/ or more target states. The methodology, which is implemented as
part of the UK molecular R-matrix codes (UKRMol and UKRMol+) can also be
used for studies of bound molecular Rydberg states, photoionisation and positron-
molecule collisions.

Key words: electron-molecule scattering, photoionisation, Rydberg states,
Slater’s rules, Hamiltonian construction, diagonalisation

1. Introduction

Modelling low-energy electron-molecule scattering systems is vital to the un-
derstanding of a range of physical processes in fields such asplasma physics [1],
astrophysics [2], cell and DNA damage [3]. There are a numberof codes avail-
able for performingab initio calculations on such collisions. The most general of
these rely on use of the so-called close-coupling expansionwhere the scattering

Email addresses: ahmed.al-refaie.12@ucl.ac.uk (Ahmed F. Al-Refaie),
j.tennyson@ucl.ac.uk (Jonathan Tennyson)

Preprint submitted to Computer Physics Communications July 17, 2017

wavefunction,Ψk, is represented, at least in the region of the molecular target, by:

Ψk = A
∑

i jn

φin(x1, x2,xN)ui j(xN+1)ain jk +
∑

ℓ

χℓ(x1, x2, ...xN+1)bℓk (1)

whereφin are the target wavefunctions andui j are continuum orbitals. The index
i is the target symmetry,j is the continuum orbital index andn counts over target
states belonging to symmetryi. A is the anti-symmetrization operator to ensure
that the target times continuum wavefunction obeys the Pauli principle. Theχℓ
are short-range orL2 functions where all electrons occupy target orbitals;xp rep-
resents the coordinates of electronp where it is assumed that the target hasN
electrons and hence the scattering system hasN + 1 electrons. Finally,ain jk and
blk are the variational coefficients obtained by diagonalization of the Hamiltonian.

A variety of different models can be represented by this close-coupling expan-
sion [4], including ones based on the use pseudo-states to augment expansion in
physical target states. This approach is employed in the R-matrix with pseudo-
states (RMPS) procedure [5–7]. In general, the target wave-function is expanded
in configuration interaction (CI) form as a linear combination of configuration
state functions (CSFs)η:

φin =
∑

m

cimnηim. (2)

The Hamiltonian matrix derived from the use close-couplingexpansion de-
scribed above has a characteristic structure, see Fig. 1 below. In 1996, Tennyson
[8] showed that it was possible to exploit this structure to greatly speed-up the
construction of scattering Hamiltonians. His algorithm, as implemented in mod-
ule SCATCI and which is discussed in detail below, has formed the backbone of
various implementations of the UK Molecular R-matrix codes [9–13]. The al-
gorithm used by SCATCI is extremely efficient leading it to be used for extensive
close-coupling calculations on electron collisions N+2 [14], SiN [15], CH3CN [16],
uracil [17, 18] pyramidine [19] and many others systems, as well as for studies of
positron–molecule collisions [20–22].

Hamiltonian construction and diagonalization is usually the slowest step in the
ab initio treatment of low-energy electron-molecule scattering. While diagonal-
ization can usually spread over a number of cores, SCATCI is currently limited
by its serial nature. This step in the calculation can becomeexpensive if one or
more of the following applies: (a) the use of an extensive list target states and/or
pseudo-state; (b) large target CI expansions; (c) large continuum orbital basis sets.
With modern calculations it is quite possible that all threeof these criteria apply
and it is quite easy to design desirable but intractable calculations for even di-
atomic targets [23]. The recent development of the B-spline based UKRMol+
code [13, 24], which extends both the range of energies and size of target that it is
possible to treat, has only further exacerbated this situation.

2

It would therefore appear timely to revisit Tennyson’s Hamiltonian build al-
gorithm. This algorithm was designed to run on serial computers and, given the
prevalence of modern multi-core architectures, it is on a parallel implementation
that we particularly focus. At the same time, it has been recognized that the struc-
ture of various the Hamiltonian matrices that can be generated using this algorithm
lend themselves to different diagonalization procedures [22, 25]. These different
diagonalization options are also integrate into a new MPI code, MPI-SCATCI.
The next section specifies the formal aspects of the new code.Section 3 intro-
duces the code itself, which is freely available from the ukrmol-in project in the
CCPForge program depository1, Section 4 gives some illustrative timings. Our
conclusions and suggestions for future work are given in Section 5.

2. Theory

Using the close-coupling expansion in the form of Eq. (1) andthe target CI
expansion of Eq. (2) to build the final Hamiltonian matrix oneneeds, at least in
principle, to evaluate many Hamiltonian matrix elements ofthe form

Him j,i′m′ j′ = 〈ηimui j|Ĥ|ηi′m′ui′ j′〉 (3)

In practice the CSFs are expanded in terms of an orthogonal setof spin-orbitals
which in turn are represented by atom and molecule centred functions of various
types [26], which are discussed further below. However, we note that for accu-
rate calculations, the target CI expansions can be very long and the the number
of target states is usually significantly smaller than the number of target CSFs.
To allow the identification of target states within the expansion, for example to
correctly assign asymptotic channels, it is desirable to contract the matrix:

H̃in j,i′n′ j′ =
∑

m,m′
cimnci′m′n′Him j,i′m′ j′ (4)

wherecimn is the coefficient of the target CI expansion, see Eq. (2). The target-L2

part of the calculation undergoes a similar contraction scheme:

H̃in j,l =
∑

m

cimnHim j,l. (5)

These steps very significantly reduce the size of the Hamiltonian, hence the de-
scription contraction, and the majority of matrix elementsretained are usually
between theL2 functions.

1https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in (registration required)

3

https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in

2.1. Symbolic evaluation, prototyping and expansion
Whilst the matrix itself is smaller, evaluating Eq. (4), in principle, requires

the evaluation of all integrals in Eq. (3). SCATCI implements the algorithm of
Tennyson [8] that avoids evaluating integrals and explicitcomputation of the un-
contracted Hamiltonian. This is done through the manipulation of symbolic ma-
trix elements [27] generated using prototype CSFs [28, 29]. This procedure ex-
ploits the structure of the scattering wavefunction, see Eq. (1), where a particular
target wavefunction or CSF is multiplied by a (long) list of continuum functions.

The Hamiltonian construction is driven from a list of CSFs. The required inte-
grals are identified by the application of Slater’s rules to give a list of symbolic ma-
trix element. The published versions of the UKRMol/UKRMol+ codes are based
on a traditional algorithm for Slater’s rules. Scemama and Giner [30] proposed
an alternative algorithm that represents all possible spinorbitals that an electron
can occupy as an array of 64-bit integers. Each integer can represent 64 spin
orbitals and each set bit in thenth position represents an electron occupying the
nth spin orbital. Determining the substitutions between two determinants can be
easily computed by performing an exclusive-or (XOR) followed by a population
count (popcnt). Their algorithm also determines the resultant phase from possi-
ble spin orbital reordering by computing the number of occupied orbitals between
the differing orbitals using bit masks. A bug fix was applied to their optimized
implementation that caused incorrect masks to be generatedwhen orbital indices
where of a multiple of 64, this fix has since been applied to theoriginal authors
source code. The majority of the computation relies mainly on hardware native
instructions such as bit shifts, XOR and popcnt (AVX+ instruction set) making
it extremely efficient and reducing overall Hamiltonian build times by factors of
two to five. This algorithm is also independent of the number of electrons making
it ideal for large polyatomic molecules. This efficient algorithm is the one used in
MPI-SCATCI

To briefly summarize, the SCATCI procedure involves transforming the eval-
uation of both Hamiltonian into symbolic form. For Eq. (3) this is of the form:

Him j,i′m′ j′ =
∑

α

Cαim j,i′m′ j′X(Iαim j,i′m′ j′) (6)

Whereα are the associated integral indicesIα and coefficientsCα generated for the
matrix element andX is the integral function. Within the UK molecule R-matrix
codes, the indices are four 16-bit integers representing the associated orbitals in
the integral packed into a 64-bit integer. As the configurations obey the Slater-
Condon rules, there are a fixed number of one and two electron integrals that can
be precomputed ahead of time. Therefore,X is a function that maps the indices
I into a one and two-electron integral array and returns the appropriate integral
value.

4

The contracted matrix can also be expressed similarly:

H̃in j,i′n′ j′ =
∑

β

Dβin j,i′n′ j′X(Iβi j,i′ j′) (7)

Whilst there are essentially no integral evaluations, largenumbers of contin-
uum orbitals and target configurations make this computationally undesirable.
One way this is circumvented is to utilize symbolic prototyping. This method-
ology removes the need to explicitly evaluate matrix elements for each continuum
orbital j by instead evaluating the full Hamiltonian matrix elementsfor one or
two prototype configurations corresponding to one or twoj and generating the
full symbolic lists by manipulating the integral indices. This is the essence of
Tennyson’s algorithm [8].

Transformation the full Hamiltonian matrix to the CI contracted one can be
performed by contracting the minimal prototype symbolic elements ofH. The
prototype integral labels do not change but the associated coefficients do depend-
ing on the target symmetries and states:

Dβin j,i′n′ j′ =
∑

m,m′
cimnci′m′n′C

α
im j,i′m′ j′ (8)

after which the labels are expanded into the full range ofj. This means that the
full Hamiltonian is never explicitly evaluated.

2.2. Matrix classes
The consequence of this contraction is that the matrix is nowsplit into dif-

fering contraction classes based on the symmetry properties of the target states
and theL2 functions. Below is a summary of these contracted classes with Fig-
ure 1 illustrating them. Since the Hamiltonian is real symmetric, only the lower
triangular portion is considered.

2.2.1. Classes 1 and 3
Classes 1 and 3 involve matrix elements between functions with the same tar-

get symmetry. Class 1 are the diagonal matrix elements involving a target state
times a continuum orbital. These integrals can also occur inoff-diagonal elements
involving different states of the same symmetry. Class 3 are the off-diagonal ele-
ments involving different target states of a given symmetry; they have a symmetric
block structure. The upper triangular block is the transpose of the lower triangular.
The contraction is of the form:

H̃in j,in′ j′ =
∑

m,m′

cimncimn′Him j,im j′ +
∑

m,m′

(cimn + cim′n′ + cim′ncimn′)Him j,im′ j′ (9)

The symbols are then expanded for all target states and continuum orbitals of the
target symmetry.

5

1

1

1

1

2
4 4 4 4 8

7 7 7 3

3

33
3

T

3

6

6

6

6
5 5

φ
1,1

φ
2,1

φ
1,2

φ
1,3

L
2

φ
1,1

φ
2,1

φ
1,2

φ
1,3 L

2

Figure 1: Class structure of the contracted Hamiltonian fora scattering calculation with three
target symmetries.φi, j denotes a target statei for a target symmetryj. Target symmetries 1 and 2
couple to the same continuum symmetry and symmetry 1 has two target statesφ1,1 andφ2,1.

6

2.2.2. Classes 2 and 8
Classes 2 and 8 are the diagonal and off-diagonal matrix elements of theL2

functions. These undergo no form of contraction and are instead evaluated explic-
itly. These are referred below to as ‘pureL2’ elements.

2.2.3. Classes 5 and 6
These classes involve elements where the target symmetry differs but their

coupled continuum symmetry is the same. Class 5 is the diagonal element of the
local matrix block and class 6 is the off-diagonal element. The contraction scheme
is of the form:

H̃in j,i′n′ j′ =
∑

m,m′
cimnci′m′n′Him j,i′m′ j′ (10)

2.2.4. Class 7
This class involves matrix elements where both the target and continuum sym-

metry differs. The contraction is the same as Eq. (10) and is expanded across both
target states and continuum orbitals of the target symmetries

2.2.5. Class 4
For matrix elements between continuum andL2 functions the contraction is

one-dimensional and is of the form given by Eq. (5).

2.2.6. Sparsity and diagonalization
For almost all classes, the matrix blocks are dense with the exception of the

off-diagonal pure-L2 class which is sparse. An example test case calculation of
electron-H2O [31] given in Figure 2 illustrates these properties. The nature of the
matrix changes depending on the choice of CSF. For this test case, the matrix is
considered dense due to the smaller number ofL2 functions, which encourages
the usage of a dense diagonalizer such as LAPACK[32]. When dealing with large
scattering systems of interest such as phosphoric acid, thenumber ofL2 functions
can be several orders of magnitude larger than the size of thecontracted part of the
matrix. The matrix at this point becomes extremely sparse and may necessitate
usage of a sparse diagonalizer such as ARPACK[33].

2.3. The UK-molecular R-matrix codes

The UK-molecular R-matrix suite, UKRMol [10], and its new enhanced ver-
sion, UKRMol+ [13], are a set of modules and programs to fully solve the electron/positron-
molecule scattering problem using the R-matrix methodology. The suite splits into

7

1

3

3
3 3

3

2

7 7

7 7

6

T

3

66

6

6

6

7 7

7 7 7 7 7

7 7 7 7 7

3

3

3

3

3

7 7 7 7 7 7 7

7777777

8
4

φ
1,1

L
2

L
2

55

5

φ
2,1

φ
1,2

φ
1,3

φ
1,4

φ
1,5

φ
1,6

φ
1,7

φ
1,8

φ
1,1

φ
2,1

φ
1,2

φ
1,3

φ
1,4

φ
1,5

φ
1,6
φ

1,7
φ

1,8

4 4 4 4 4 4 4 4

6

6
5

6

6
5

Figure 2: The lower-triangular Hamiltonian output for a test case for H2O with 8 target symmetries
and 4 continuum symmetries. Symmetry 1 has two target states. Target symmetries 1 and 4
both couple to the continuum symmetry 4, denoted by (1,4) → 4, leading to the appearance of
contraction classes 5 and 6 in the matrix blocks (φ1,4,φ1,1) and (φ1,4, φ2,1). Other couplings include:
(2,3)→ 3, (5,6)→ 2, (7,8)→ 1. White colors represent zero values.

8

two sets of codes: UKRMol-in2 which deals with the inner-region problem and
UKRMol-out3 which deals with the outer region.

The codes use a a variety of methods to represent the target and continuum
functions. The original code [9] only consider electron collisions with diatomic
molecules; it was based on the use of Slater type orbitals (STOs) to represent the
target wavefunction and suitably orthogonalised [34] numerical functions for the
continuum. The original polyatomic code [10, 35] uses Gaussian type orbitals
(GTOs) for both the target and the continuum functions. The new UKRMol+ [13]
also uses GTOs to represent the target but uses a hybrid GTO – B-spline basis set
for the continuum. One effect of this is that the continuum expansions can become
significantly larger as the code allows treatment of more partial waves (higherℓ
values), larger R-matrix spheres and extensions to higher energies, all of which
lead to an increase in the number of continuum functions.

A crucial module in both UKRMol and UKRMol+ is SCATCI [8]. SCATCI
is a Fortran 77 code that deals with the building and diagonalization of the inner-
regionN + 1 scattering Hamiltonian and is the last step before moving into the
outer-region portion of the calculation.

3. MPI-SCATCI

MPI-SCATCI is a complete rewrite of SCATCI in Modern Fortran (2003) that
uses MPI to perform both the N+1 Hamiltonian build and diagonalization. Its
design is heavily based on an Object-Orientated Programming (OOP) paradigm
to give the code a high degree of flexibility for further modification. Whilst previ-
ously integrating features such as a new integral format required a fair amount of
modification to build subroutines, the OOP approach allows simply for the defi-
nition of a new Integral class with appropriate procedures that is then attached to
the Hamiltonian at run time without touching the build code.Similar functional-
ity also applies to the diagonalizers and as will be discussed later on in Section
3.2, gives MPI-SCATCI the ability to support almost any diagonalizer library and
matrix format with little to no modification.

3.1. Build parallelization

There are three avenues for parallelisation of the scattering Hamiltonain: Across
prototyping and contraction, across the expansion and across the L2 functions.
The choice is dependant on the type of matrix class being calculated. Regardless
of which method is used, every process performs the same class and the same
target symmetry for the contracted classes as it simplifies the distribution of work.

2https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in
3https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-out

9

https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-in
https://ccpforge.cse.rl.ac.uk/gf/project/ukrmol-out

Processor 0

Calculates Calculates

Processor 1

Collectively

Figure 3: A visual representation of two processes evaluating the matrix elements of classes 2 and
8 in the scattering Hamiltonian

3.1.1. Classes 2 and 8
These pure-L2 elements are the most straightforward to consider as no con-

traction is required. Each Slater-Condon calculation givessymbols for a single
matrix element. MPI-SCATCI combines both classes into a single calculation and
the nested loop over the lower triangular is collapsed into asingle loop. This loop
is evenly distributed across all MPI processes and computedindependently with
no need for any form of communication. Viewing the calculation as a whole (as
seen in Figure 3), ’collectively’ all matrix elements have been calculated. This
is the parallelisation that is also used in the constructionof the target Hamilto-
nian whose solutions are required to give the target wavefunction coefficients, see
Eq. (2), and associated energies, see below.

3.1.2. Classes 1, 3, 5, 6, 7
For pure continuum classes, there is a two step parallelization that occurs.

Figure 4 visually describes this process. The first step consists of parallelizing
the prototype and contraction stage. The loop across prototype CSFs are evenly
distributed among MPI processes. This means each processorp produces an in-
complete list of contracted prototype symbolsH̃p

in j,i′n′ j′. At this point, a gather and
reduce is performed on allP processes in order to retrieve the complete set of

10

contracted prototype symbols:

H̃in j,i′n′ j′ =

P∑

p

H̃p
in j,i′n′ j′ (11)

Whilst this is a significant synchronization step, it is only performed

nt(nt + 1)
2

(12)

times wherent is the number of target symmetries. This, in general, is small num-
ber of synchronization points as the number of target symmetries in a calculation
is rarely larger than single digits.

The second step is the expansion of the prototype symbols. Very little work
is actually done during the expansion as it only requires modifying the indices of
the integral label for each continuum orbital. However, some systems have target
symmetries that are coupled to thousands of continuum orbitals. Their prototypes
require expanding for millions of matrix elements for the off-diagonal classes 3, 5,
6 and 7. Originally each process performed the full expansion on their incomplete
symbols followed by a reduction to retrieve the full matrix element. This unfortu-
nately became a significant bottleneck for continuum heavy systems and therefore
necessitated the need for parallelizing the expansion process as well. The paral-
lelization of the expansion is performed by evenly distributing processes across
the j, j′ expansion loop. Essentially, this step behaves similar to classes 2 and 8
and collectively the full matrix elements are computed. This two step approach
benefits two types of problem sizes. For systems with a large number of prototype
CSFs, the first step gives the greatest gain in performance. For systems with target
symmetries that contain a huge number of continuum orbitals, the second stage
provides the greatest benefit.

The original SCATCI had the option to remove all integrals involving only
target orbitals from the matrix elements of classes 1, 3, 5, 6and 7. These are
replaced by adding the appropriate (precomputed) target energy along the diag-
onal. This approach has a number of advantages: it significantly reduces the
number of integral evaluations and facilitates the manipulation of target energies,
see Ref. [36] for example. In future we plan to use this facility, which is retained
in MPI-SCATCI, to simplify the treatment heavy atoms via the use of effective
core potentials.

As discussed by Orelet al. [37], there can be a technical issue with phases of
the wavefunctions generated in a pure target calculation (Eq. (2)) and the scatter-
ing wavefunction (Eq. (1)) to do with order in which the electrons are treated in
the CSFs. Ignoring this problem has in the past led to generation of incorrect re-
sults, see Gillanet al. [38]. SCATCI resolves this problem by using a phase mask

11

P
ro

ce
ss

o
r

1

Calculates

P
ro

ce
ss

o
r

0
Calculates

Reduce

Contracts

Expand

Collectively

Contracts
Expand

Figure 4: A visual representation of two processes evaluating the matrix elements of continuum
only classes. The first stage involves computing and contracting the prototype elements into the
first incomplete symbolic elements of the contracted matrix. The second stage is the all process
reduction into the full symbolic prototype list. The last stage is the expansion acrossj, j′ for each
process. This means that both processes collectively have the full contracted matrix.

which matches the phases between the two wavefunctions [39]. This is retained
in MPI-SCATCI.

3.1.3. Class 4
Class 4 is the off-diagonal continuum-L2 portion of the matrix. This presents

a problem as it requires prototyping and expansion for each target symmetry and
L2 function. The number ofL2 functions in a typical calculation is significantly
larger than size of the contracted continuum. This presentsa problem with the two
step procedure as eachL2 function for each symmetry would require a prototype
synchronization step resulting in possibly millions in order to complete.

However we can exploit the fact that the prototyping, contraction and expan-
sion are all one-dimensional loops as given by Eq. (5). This means that a class
calculation for eachL2 function is significantly easier and faster to perform than
any other contracted class. With this, the parallelizationis instead performed
acrossℓ functions for a specific target symmetry independent of any other process
and eliminating any costly synchronization. This is illustrated in Figure 5

3.2. Matrix distribution

One of the key goals for the MPI code is to not only support the diagonal-
izer already included in the serial SCATCI code but also a wide range of MPI
diagonalizers. Since often all eigenvectors are required,a dense diagonalizer such
as SCALAPACK [40] is ideal for its efficient householder approach. However,
for scattering Hamiltonians that have sizes in the order of millions, an iterative
diagonalizer, such as the Scalable Library for Eigenvalue Problem Computations
(SLEPc)[41], is more desirable as matrix sparsity can be exploited for storage and

12

l=1

l=2

l=3

...

...

...

φ
1,1

φ
1,2

Proccess 0 Proccess 0

Proccess 1 Proccess 1

Proccess 0 Proccess 0L
2

Figure 5: A visual representation of the class 4 prototypingand expansion of a single target sym-
metry block containing two states using two processes. The arrows represent the direction of
generation of matrix elements. The processes are distributed in a round robin style across eachℓ
function then prototype, contract and expand for all targetstates in the symmetry.

often these sizes arise in partitioned R-matrix problems that require only a small
percentage of eigenvectors.

The Hamiltonian should therefore be built with regards to the final processor
arrangement of the matrix elements. However both SCALAPACK and SLEPc
have vastly different methods of storing the matrix. SCALAPACK uses a block-
cyclic distribution and SLEPc uses a blocked row distribution. In addition, SLEPc
requires the upper triangular matrix in C-style indexing. Therefore separate Hamil-
tonian builds would be required for each type of matrix distribution. This presents
a huge cost in time to write, test and debug every Hamiltonianfor every distribu-
tion.

3.2.1. Matrix formats
In MPI-SCATCI, an abstractBaseMatrix class is defined which provides the

Hamiltonian a standard routine to store a matrix element. Aninherited abstract
DistributedMatrix class is also defined which will distribute the matrix el-
ements in any format. It works by allowing the processes to touch every single
matrix element at least once at some point during execution and by applying rules.

The rules are defined by a virtual boolean function. Each inherited matrix for-
mat must define this function in order to properly place matrix elements into the
correct process. Two types of storage are defined, hot and cold storage. Hot stor-

13

age is temporary storage for matrix elements that, after applying rules, do not be-
long to the computing process. This type of storage is the same for all distributed
matrix class. Cold storage is the permanent storage of matrixelements that will
eventually be used in diagonalization. Its representationdepends on the format,
for SCALAPACK it is the local matrix array, for SLEPc it is a Petsc Mat object.
At some point during the build an update can be triggered. This update consists
of rotating the hot storage in a ring like fashion across every process as illustrated
in Figure 6 and applying the defined rules to each element for possible placement
into cold storage. This means that communication through aninterconnect only
occurs with 2 of the processors in a node giving a communication overhead of the
order 2(n − 1) wheren is the number of nodes. Once each processes hot storage
has completed a circuit, it is cleared and ready for usage again.

An update is triggered through two means: When memory has beenexhausted
and when the Hamiltonian build is completed. MPI-SCATCI tracks available free
memory and when a process has exhausted all of its available memory, this signals
all other processes to begin an update. This has the benefit inthat when either
given more RAM or more processes, the number of updates required in a run
decreases. This is because we can either store more matrix elements or that we
are storing less matrix elements per process. As will be discussed in Section 4 the
update time remains essentially constant across processorcounts.

This DistributedMatrix has proved beneficial as, barring initialization, re-
quires only a single function definition to support the appropriate format without
touching the Hamiltonian build. Currently, MPI-SCATCI has defined three types
of distributed matrices:

• SCALAPACKMatrix

– Stores local matrix in block cyclic distribution

– Used by SCALAPACK diagonalizer

– Distribution rule:

∗ Call INFOG2L. If it belongs to me then store and return true oth-
erwise false

• SLEPcMatrix

– Stores in a PETSc Mat object in blocked row distribution

– Used by SLEPc diagonalizer

– Distribution rule:

∗ Convert into upper triangular matrix and C index format

∗ If it is within block row, store and return true otherwise false

14

Exch
ange

Exchange

Exchange

Processor 0

Processor 1
Processor 2

Figure 6: Ring rotation of the each processes hot storage

15

• WriterMatrix

– Writes matrix elements to file

– Used by original SCATCI diagonalizers

– Distribution rule:

∗ If I am master process, store (and write) and return true, otherwise
false

The SLEPcMatrix class presents another interesting feature, the rule function
can also be used to preprocess a matrix element and in this case, convert into
upper triangular and C-style indexing before storing. Additionally, PETSc matrix
assembly time is non-existent as the elements are all in the correct process.

3.2.2. Diagonalization
The abstractDiagonalizer class provides a standard diagonalization routine

that accepts aBaseMatrix as input. There is, however, no standard matrix ele-
ment retrieval routine due to the vastly differing ways the matrix is stored (and
sometimes not stored). Whilst it is technically valid to passanyBaseMatrix into
any diagonalizer routine, it is up to the implementer to determine how to access
the element for each format. The currently implemented diagonalizers perform
a type check on the matrix pointer and either halts if it is notsupported or calls
the correct subroutine that typecasts back into its derivedclass. Whilst this seems
to go against the OOP approach used in the rest of the code, theperformance
benefits are massive. For the SCALAPACK diagonalizer, the SCALAPACKMa-
trix provides the correct local array to immediately begin diagonalization and the
same goes for the SLEPc diagonalizer and its corresponding matrix.

It is also worth noting that both SLEPc and SCALAPACK can be usedin the
same run. It is common for a run to use SLEPc to retrieve the target coefficients for
the Hamiltonian build to then shift to SCALAPACK for the diagonalization of the
scattering Hamiltonian. The diagonalizers currently supported by MPI-SCATCI
are: LAPACK, Davidson [42], ARPACK, SCALAPACK and SLEPc and all can
be mixed in the same run. Additionally, there is an experimental feature for non-
MPI diagonalizers to utilize all threads in a node by sleeping other MPI processes
whilst the master process performs OpenMP diagonalization. This is beneficial for
the parallel MKL LAPACK as it is generally more efficient in a single node than
SCALAPACK. However, this feature is unreliable as it is dependant on the non-
polling barrier implementation of the MPI library and the pinning modes used.

3.3. Large Integrals

Under MPI, each process is given a private memory space. Taking an exam-
ple 24-core node with 64 GB of memory and distributing evenly, this allows for

16

a maximum of 2.5 GB per MPI process. Each process must store its own local
copy of the CSFs, the local matrix and the integrals with this small amount of
memory. The biggest cost comes from the integrals themselves. For instance, a
the UKRMol phosphoric acid scattering calculation considered below requires 1.5
GB of memory to store the integrals leaving only 1 GB for everything else. This
is a bigger issue with UKRMol+ calculations using B-splines. The integrals for
the recent electron-beryllium mono-hydride (BeH) UKRMol+ calculation [24] re-
quire 3.0 GB, preventing them from being used as one of our example systems.
Scattering calculations on larger systems such as uracil using B-splines may re-
quire tens of gigabytes of memory to store all of the integrals.

The fundamental issue is that the integral data is being repeated multiple times
in each node as illustrated in Figure 7a. Naturally a method of distributing the
integrals is needed and there are many to choose from.

Firstly, an integral scatter method could be implemented where each process
has a portion of the integrals and are then moved across when necessary. How-
ever it is difficult to predict which integrals are needed by which process and this
is compounded by the fact that expansion of the prototype elements can introduce
hundreds of differing integrals that are not present within the computing process.
In a sense, at each integral evaluation it is likely that there will be a significant de-
gree of communication which will kill performance, especially at higher process
counts.

Another method would be to reduce the number of MPI processesin each node
but to then restore parallel performance by utilizing OpenMP. A single occurrence
of the integral could occur at each node giving us a large amount of memory to
store integrals as well as minimizing the communication cost in synchronization
as it will only occur at each node rather than each process. However, OpenMP 4.0
support of modern Fortran is still not mature enough and language features such
as polymorphism are not fully supported resulting in crashes. Additionally some
MPI diagonalizers are not hybrid OpenMP+MPI and therefore suffer in perfor-
mance.

The method used by MPI-SCATCI utilizes a feature of the MPI-3.0standard:
Shared memory

3.3.1. Shared Memory
Shared memory is a feature which allows a portion of memory tobe seen by a

group of processes. This feature was actually present in some form with the MPI-
2.0 standard through the use of windows but was in a sense a collective operation
requiring many synchronizing ’epoch’ in order to get or put.Additionally it is
not aware of the node-locality of certain processes and assumes remote memory
access (RMA) at all times. The MPI-3.0 standard introduces a new communicator:
MPI_COMM_TYPE_SHARED. this communicator groups process by which node they

17

In
te

g
ra

ls

0

In
te

g
ra

ls

1

In
te

g
ra

ls

2

In
te

g
ra

ls

3

In
te

g
ra

ls

0

In
te

g
ra

ls

1

In
te

g
ra

ls

2

In
te

g
ra

ls

3

0 1 2

Integrals

30 1 2

Integrals

3

a)

b)

Figure 7: Two Memory layouts of the integrals for two four-core nodes with interconnect (red)
between the two. a) The standard private memory layout underMPI and highlights the amount of
repeated data on each compute node. b) MPI-3.0 Shared memorylayout, Only a single instance
of the integral is loaded for each node.

18

occur in. A shared window can be allocated that is node aware and removes the
need for RMA, improving memory access times. Additionally there is no need
for synchronization for any puts or gets but is still necessary to ensure no race
conditions occur. However this is ideal as the integrals, once loaded, become
read only eliminating any further fencing on gets. The elimination of fencing
also prevents costly cache synchronization steps though there are still local cache
misses due to the random access nature of the integrals. The simplicity of this
usage is a significant advantage as the shared memory array behaves identically to
a normal Fortran array once it has been set up. The memory layout of our integrals
now reflects the illustration in Figure 7b and affords the code the ability to handle
extremely large integrals that fit within the nodes total memory.

A new module was created in order to facilitate this functionality. It replaces
the standard Fortran allocate function for arrays that we wish to share. For exam-
ple, allocating an array for the one electron integrals:
allocate(one_e_int(num_one_e_int),stat=ifail)

Becomes this:
one_electron_window =

mpi_memory_allocate_real (one_e_int ,num_one_e_int)

If there is no available MPI-3.0 library, this will fallbackinto the standard For-
tran allocate routine. The window variable is used both for determining if shared
memory is being used and for deallocation. No other change inthe integral rou-
tines is necessary. No change in performance has been observed between having
a local private copy of the integrals and utilizing shared memory.

4. Performance

MPI-SCATCI has been successfully run and benchmarked on both University
College London’s Grace@UCL supercomputing cluster and ARCHER, the UK
National Supercomputer Service. Grace@UCL has 360 nodes each with 16 Intel
Haswell cores and 64 GB of memory connected by non-blocking Intel Truescale
Infiniband. ARCHER’s Cray XC30 nodes comprise of two 2.7 GHz, 12-core
E5-2697 v2 CPUs with 32 GB each arranged in a non-uniform memory access
(NUMA) configuration giving 24 cores and 64 GB total connected with Cray
Aries interconnect. The benchmark runs all stored the scattering Hamiltonian
on disk rather than in a format ready for diagonalization. This is to allow a bet-
ter ’apples to apples’ comparison to the serial SCATCI code andthe fact that we
are not assessing the performance of the diagonalizers themselves. This will still
test the matrix distribution performance as the runs rely onthe WriterMatrix class
which can be considered a worst case example due to the included overhead of
disk IO.

19

The single core build timeT0 is equivalent to the serial SCATCI build time.
The ideal timeTi for Np processes is computed as:

Ti =
T0

Np
(13)

and is based on the assumption that all aspects of the calculation (including IO)
are perfectly parallel. Whilst unrealistic, it at least gives a general sense of how
the build times should scale with process count. The update and IO time is the
time taken to perform any kind of MPI synchronization which includes the ring
cycling of data in the matrix class. Since the WriterMatrix performs a disk write
in this step, this overhead is also partially due to IO.

The node counts used were 1, 2, 3, 8 and 50. The total core counts for
ARCHER are 24, 48, 72, 192 and 1200 and for Grace@UCL 16, 32, 48, 128
and 800 respectively. The first four tests were used to assesshow the scaling
behaves incrementally and the last test assesses the affect of synchronization at
overly generous core counts.

4.1. Phosphoric acid
Our phosphoric acid (H3PO4) test is based on the study of Bryjkoet al [43].

This is an example of anL2 heavy calculation. The contracted portion of the
matrix is only of size 712 whilst the un-contracted portion is of size 122103 giving
a total Hamiltonian size ofN = 122815. The total storage space required for the
integrals was 1.5 GB. Using shared memory, the cost to each processor was only
64–96 MB. The serial SCATCI reference time isT0 =8820 s. A serial single core
run on MPI-SCATCI gives a time of 7800 s, a 12% improvement, likely from the
more efficient Slater rule code.

Figure 8 shows the performance scaling for the phosphoric acid calculation.
For a single node run on ARCHER, the time taken is 410 s corresponding to
a speed up of≈ 21 times and a parallel efficiency of≈ 87%. A Grace@UCL
single node run is 630 s giving a speed up of 14 and a parallel efficiency of≈
87.5%. The speed up behaves linearly up to 72 cores before reducing at 192 cores
and approaching the update+IO time at 1200 cores. This reduction comes from
the fact that the update time now becomes a significant portion of the total time,
reaching to≈ 70% of total and reducing parallel efficiency to≈ 11 %. However
it is worth noting the behaviour of the update+IO time is essentially constant as
discussed previously and arises solely from the fewer number of updates required
in a single run offsetting the communication overhead at higher node counts.

For phosphoric acid, the build phase requires between 1 to 3 nodes for max-
imum efficiency and reduces the calculation from hours to minutes with higher
counts considered overkill. However a higher process countwould still be benefi-
cial if one wishes to perform diagonalization afterwards.

20

Figure 8: Time taken (log scale) to build the scattering Hamiltonian for phosphoric acid against
process counts (log scale). The size of the Hamiltonian isN = 122815. The ideal time is computed
using Eq. 13. The update+IO time is the time taken for MPI synchronization steps that include
disk writes by the WriterMatrix. The time taken by MPI-SCATCIincludes the update+IO time.

21

Figure 9: Time taken (log scale) to build the scattering Hamiltonian for BeH against process counts
(log scale). The size of the Hamiltonian isN = 30667. The ideal time is computed using Eq. 13.
The update+IO time is the time taken for MPI synchronization steps that include disk writes by
the WriterMatrix. The time taken by MPI-SCATCI includes the update+IO time.

4.2. Beryllium mono-hydride

The Beryllium mono-hydride (BeH) [24] calculation is a contraction heavy
calculation. The contracted portion of the matrix is of dimension 10104 and theL2

portion is of dimension 20563 giving a total dimension ofN = 30667. Whilst this
matrix is significantly smaller than phosphoric acid, it acts as a better system for
assessing the scaling of the heavier contraction calculation with its higher number
of target symmetries (4) and with≈ 19 target states per target symmetry. The total
storage space required for the integrals was 3.0 GB. Using shared memory, the
cost to each processor was only 128-196 MB. The reference serial SCATCI time
is T0 =1993.6 s. A serial single core run on MPI-SCATCI gives a time of 1154 s,
a 58% improvement from SCATCI.

Figure 9 shows the performance scaling for the BeH calculation with a refer-
ence single core timeT0 =1993.6 s. Almost identically to phosphoric acid, the
single node ARCHER run corresponds to a speed up of≈ 20 times and a par-
allel efficiency of≈ 84%. The Grace@UCL single node run gives a 17.3 times
speed up giving a>100 % parallel efficiency. However, the parallel efficiency

22

drops almost immediately past this core count. This again arises from the update
time comprising the majority of the calculation past this point. At 1200 cores the
total time has converged with the update time. Interestingly the baseline update
time also remains constant across core counts and only increases by 10 % from
phosphoric acid. This comes from the increased number of target symmetries that
require the prototype symbols to be synchronized for the contracted classes sans
class 4. The constant behaviour of this across high process counts may come from
the fact that the number of prototype symbols are in the orderof thousands and the
parallelization reduces this to tens of symbols for each process. These likely fit
into a single packet for the interconnect. Therefore the cost may only come from
the latency of the interconnect itself which is in the order of nanoseconds. Again,
a single node may be considered the sweet spot for build efficiency for BeH and
higher counts benefiting diagonalization.

Grace@UCL in general has a slightly lower update time, but this is most likely
due to better disk IO as its single node update time is≈ 30 % better than its
> 1 node performance. Running a smaller scale test on BeH with 8-12 cores
over 1Gbps Ethernet, update times are 91.1 s and 171 s respectively. Considering
that the resulting Hamiltonian is≈ 5.6 GB, the update message moving between
nodes can be as big as 1 GB, oversaturating the interconnect bandwidth. Since
both Infiniband interconnects are in the realm of≈ 50 Gbps, and that each core is
limited to a maximum of≈ 2 GB of matrix elements, the Infiniband bandwidth is
not fully utilized. Therefore it is most likely the IO bandwidth that is limiting the
synchronization time. This is most apparent when using a SCALAPACK Matrix
as it only requires a look-up and insertion into an array. Forboth GRACE and
ARCHER, the update times for this matrix type is around≈ 17.2 s.

For both examples, the overall behaviour of the code is that the parallel effi-
ciency is determined by the percentage of the total time taken by the update. In a
sense, the update for both matrices is unaffected by core count. The greatest ben-
efit of the code may lie in problems in the order of millions or tens of millions that
take days or months to complete. High core counts may reduce these calculations
to hours which would still remain significantly greater thanthe update time.

5. Conclusion

The UKRMol code SCATCI has been rewritten to modern standards with MPI
integrated for large parallel build and diagonalization. It exploits OOP paradigms
to provide flexibility for future development. A parallelization of the efficient
algorithm provided by Tennyson [8] reduces a 3 hour-long calculation on phos-
phoric acid to several tens of seconds with only 1-3 nodes. Itworks by integrating
several new parallel algorithms for each class to exploit their particular contrac-
tion behaviour in order to achieve a high degree of efficiency. Additionally the

23

code supports LAPACK, ARPACK, SCALAPACK and SLEPc diagonalizersand
has the ability to support many more if desired with only a fewlines of code.

Use of the R-Matrix with pseudo-states (RMPS) method can rapidly lead to
desirable cases where the matrix build is both large (1,000,000+) and computa-
tionally demanding [23]. Such calculations, which are important to model polar-
ization effects in a trulyab initio manner [44], are the key for studying low-lying
resonances in systems such as electron-uracil. Such calculations are currently
underway.

This article has focused heavily on electron - molecule scattering aspects of
the UK Molecular R-matrix codes. In fact MPI-SCATCI can be used to address
other problems. A powerful but not greatly used aspect of thecodes is for the stud-
ies of high-lying but bound Rydberg states of molecules. Studies have shown the
use of scattering wavefunctions provides a much more efficient means of identify-
ing these states than standard quantum-chemistry electronic structure calculations
[45]. The UKRMol codes are also being increasingly used to study photoioni-
sation [46–49] and photodetachment [50]. This use raises animportant technical
issue with the SCATCI algorithm since the contracted Hamiltonian is based on the
use of very lengthy strings of effective configuration state functions (CSFs). These
CSFs, which represent entire target CI wavefunctions, do not obey the standard
Slater’s rules. This means their use in computing the transition dipole moment
matrix elements required for photon-driven processes requires special algorithms.
Harveyet al [46] have implemented such an algorithm for SCATCI and we an-
ticipate MPI-SCATCI being extensively used for future calculations on processes
involving photons.

6. Acknowledgements

This work was funded under the embedded CSE programme of the ARCHER
UK National Supercomputing Service (http://www.archer.ac.uk) as project eCSE08-
7. The authors acknowledge the use of the UCL Grace High Performance Com-
puting Facility (Grace@UCL), and associated support services, in the completion
of this work. We thank Jimena Gorfinkiel and Zdenek Masin for helpful discus-
sions, and Daniel Darby-Lewis and Kalyan Chakrabarti for help with input files.
AFA would also like to thank Dr. Faris N. Al-Refaie, Lamya Ali,Sarfraz and Eri
Aziz, and Rory and Annie Gleeson for their support.

References

[1] K. Bartschat, M. J. Kushner, Electron collisions with atoms, ions,
molecules, and surfaces: Fundamental science empowering ad-
vances in technology, Proc. Nat. Acad. Sci. 113 (2016) 7026–7034.
doi:{10.1073/pnas.1606132113}.

24

http://dx.doi.org/{10.1073/pnas.1606132113}

[2] J. Tennyson, A. Faure, Electron-driven processes in space, in: Gas
Phase Chemistry in Space: From elementary particles to complex organic
molecules, IOPP, Bristol, UK, 2017.

[3] B. Boudäıffa, P. Cloutier, D. Hunting, M. A. Huels, L. Sanche, Resonant
Formation of DNA Strand Breaks by Low-Energy (3 to 20 eV) Electrons,
Science 287 (2000) 1658–1660.doi:10.1126/science.287.5458.1658.

[4] K. Bartschat, J. Tennyson, O. Zatsarinny, Quantum-mechanical calculations
of cross sections for electron collisions with atoms and molecules, Plasma
Proc. Polymers 14 (2017) 1600093.doi:10.1002/ppap.201600093.

[5] K. Bartschat, The R-matrix with pseudo-states method: Theory and appli-
cations to electron scattering and photoionization, Computer Phys. Comm.
114 (1998) 168–182.

[6] J. D. Gorfinkiel, J. Tennyson, Electron-H+3 collisions at intermediate ener-
gies, J. Phys. B: At. Mol. Opt. Phys. 37 (2004) L343–L350.

[7] J. D. Gorfinkiel, J. Tennyson, Electron impact ionisation of small molecules
at intermediate energies: the R-matrix with pseudostates method, J. Phys. B:
At. Mol. Opt. Phys. 38 (2005) 1607–1622.

[8] J. Tennyson, A new algorithm for Hamiltonian matrix construction in
electron-molecule collision calculations, J. Phys. B: At. Mol. Opt. Phys. 29
(1996) 1817–1828.

[9] C. J. Gillan, J. Tennyson, P. G. Burke, The UK molecular R-matrix scat-
tering package: a computational perspective, in: W. Huo, F.A. Gianturco
(Eds.), Computational methods for Electron-molecule collisions, Plenum,
New York, 1995, pp. 239–254.

[10] L. A. Morgan, J. Tennyson, C. J. Gillan, The UK molecular R-matrix codes,
Comput. Phys. Commun. 114 (1998) 120–128.

[11] J. M. Carr, P. G. Galiatsatos, J. D. Gorfinkiel, A. G. Harvey, M. A. Lysaght,
D. Madden, Z. Mǎśın, M. Plummer, J. Tennyson, The ukrmol program suite,
Eur. Phys. J. D 66 (2012) 58.

[12] J. Tennyson, D. B. Brown, J. J. Munro, I. Rozum, H. N. Varambhia, N. Vinci,
Quantemol-n: an expert system for performing electron molecule collision
calculations using the r-matrix method, J. Phys. Conf. Ser. 86 (2007) 012001.

[13] Z. Maš́ın, The UKRMol+ codes (2016).

25

http://dx.doi.org/10.1126/science.287.5458.1658
http://dx.doi.org/10.1002/ppap.201600093

[14] D. A. Little, J. Tennyson, An R-matrix study of singlet and triplet continuum
states of N2, J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 105204.

[15] S. Kaur, K. L. Baluja, Electron-impact study of SiN us-
ing the R-matrix method, Eur. Phys. J. D 69 (2015) 89.
doi:10.1140/epjd/e2015-50530-1.

[16] M. M. Fujimoto, E. V. R. de Lima, J. Tennyson, Low-energy electron col-
lisions with CH3CN and CH3NC isomers, Eur. Phys. J. D 69 (2015) 153.
doi:10.1140/epjd/e2015-60189-1.

[17] A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, R-matrix calculation of low-
energy electron collisions with uracil, J. Chem. Phys. 130 (2009) 164307.

[18] Z. Masin, J. D. Gorfinkiel, Resonance formation in low energy
electron scattering from uracil, Eur. Phys. J. D 68 (2014) 112.
doi:{10.1140/epjd/e2014-40797-y}.

[19] Z. Maš́ın, J. D. Gorfinkiel, Effect of the thirdπ resonance on the angular
distributions for electron-pyrimidine scattering, Eur. Phys. J. D 70 (2016)
151. doi:10.1140/epjd/e2016-70165-x.

[20] K. L. Baluja, R. Zhang, J. Franz, J. Tennyson, Low-energy positron colli-
sions with water: elastic and rotationally inelastic scattering, J. Phys. B: At.
Mol. Opt. Phys. 40 (2007) 3515–3524.

[21] R. Zhang, K. L. Baluja, J. Franz, J. Tennyson, Positron collisions with
molecular hydrogen: cross sections and annihilation parameters calculated
using theR-matrix with pseudo-states method, J. Phys. B: At. Mol. Opt.
Phys. 44 (2011) 035203.

[22] R. Zhang, P. G. Galiatsatos, J. Tennyson, Positron collisions with acetylene
calculated using the R-matrix with pseudo-states method, J.Phys. B: At.
Mol. Opt. Phys. 44 (2011) 195203.

[23] G. Halmov́a, J. D. Gorfinkiel, J. Tennyson, Low and intermediate energy
electron collisions with the C−2 molecular anion, J. Phys. B: At. Mol. Opt.
Phys. 41 (2008) 155201.

[24] D. Darby-Lewis, Z. Masin, J. Tennyson, R-Matrix Calculations of electron-
impact electronic excitation of BeH, J. Phys. B: At. Mol. Opt. Phys.

[25] J. Tennyson, Partitioned R-matrix theory for molecules, J. Phys. B: At. Mol.
Opt. Phys. 37 (2004) 1061–1071.

26

http://dx.doi.org/10.1140/epjd/e2015-50530-1
http://dx.doi.org/10.1140/epjd/e2015-60189-1
http://dx.doi.org/{10.1140/epjd/e2014-40797-y}
http://dx.doi.org/10.1140/epjd/e2016-70165-x

[26] J. Tennyson, Electron - molecule collision calculations using the R-matrix
method, Phys. Rep. 491 (2010) 29–76.

[27] B. Liu, M. Yoshimine, The alchemy configuration-interaction method .1.
the symbolic matrix-method for determining elements of matrix operators,
J. Chem. Phys. 74 (1981) 612–616.

[28] M. Yoshimine, CONSTRUCTION OF HAMILTONIAN MATRIX IN
LARGE CONFIGURATION INTERACTION CALCULATIONS, J. Com-
put. Phys. 11 (1973) 449–454.

[29] L. A. Morgan, J. Tennyson, Electron impact excitation cross sections for CO,
J. Phys. B: At. Mol. Opt. Phys. 26 (1993) 2429–2441.

[30] A. Scemama, E. Giner, An efficient implementation of Slater-Condon rules,
ArXiv e-printsarXiv:1311.6244.

[31] J. D. Gorfinkiel, L. A. Morgan, J. Tennyson, Electron impact dissociative
excitation of water within the adiabatic nuclei approximation, J. Phys. B: At.
Mol. Opt. Phys. 35 (2002) 543–555.

[32] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LA-
PACK Users’ Guide, 3rd Edition, Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1999.

[33] R. B. Lehoucq, D. C. Sorensen, C. Yang, ARPACK Users’ Guide: Solu-
tion of Large-scale Eigenvalue Problems with Implicitly Restarted Arnoldi
Methods (Software, Environments and Tools), Society for Industrial & Ap-
plied Mathematics, U.S., 1998, seehttp://www.caam.rice.edu/software/ARPACK/.

[34] J. Tennyson, P. G. Burke, K. A. Berrington, Generation of continuum or-
bitals for molecular R-matrix calculations using lagrange orthogonalisation,
Comput. Phys. Commun. 47 (1987) 207–212.

[35] L. A. Morgan, C. J. Gillan, J. Tennyson, X. Chen, R-matrix calculations for
polyatomic molecules: electron scattering by N2O, J. Phys. B: At. Mol. Opt.
Phys. 30 (1997) 4087–4096.

[36] D. T. Stibbe, J. Tennyson, Ab initio calculations of vibrationally resolved
resonances in electron collisions with H2, HD and D2, Phys. Rev. Lett. 79
(1997) 4116–4119.

[37] A. E. Orel, T. N. Rescigno, B. H. Lengsfield III, Dissociative excitation of
HeH+ by electron-impact, Phys. Rev. A 44 (1991) 4328–4335.

27

http://arxiv.org/abs/1311.6244

[38] C. J. Gillan, J. Tennyson, B. M. McLaughlin, P. G. Burke, Lowenergy elec-
tron impact excitation of the nitrogen molecule: opticallyforbidden transi-
tions, J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 1531–1547.

[39] J. Tennyson, Phase factors in electron-molecule collision calculations, Com-
put. Phys. Commun. 100 (1997) 26–30.

[40] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker,
R. C. Whaley, ScaLAPACK Users’ Guide, Society for Industrial andApplied
Mathematics, Philadelphia, PA, 1997.

[41] V. Hernandez, J. E. Roman, V. Vidal, SLEPc: A scalable andflexible toolkit
for the solution of eigenvalue problems, ACM Trans. Math. Software 31 (3)
(2005) 351–362.

[42] A. Stathopoulos, C. F. Fischer, A DAVIDSON PROGRAM FOR FINDING
A FEW SELECTED EXTREME EIGENPAIRS OF A LARGE, SPARSE,
REAL, SYMMETRICAL MATRIX, Comput. Phys. Commun. 79 (1994)
268–290.doi:{10.1016/0010-4655(94)90073-6}.

[43] L. Bryjko, T. van Mourik, A. Dora, J. Tennyson,r-matrix calculation of
low-energy electron collisions with phosphoric acid, J. Phys. B: At. Mol.
Opt. Phys. 43 (2010) 235203.

[44] M. Jones, J. Tennyson, On the use of pseudostates to calculate molecular
polarizabilities, J. Phys. B: At. Mol. Opt. Phys. 43 (2010) 045101.

[45] D. A. Little, J. Tennyson, Singlet and tripletab initio Rydberg states of N2,
J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 145102.

[46] A. G. Harvey, D. S. Brambila, F. Morales, O. Smirnova, An R-matrix ap-
proach to electron-photon-molecule collisions: photoelectron angular distri-
butions from aligned molecules, J. Phys. B: At. Mol. Opt. Phys. 47 (2014)
215005.doi:{10.1088/0953-4075/47/21/215005}.

[47] A. Rouzee, A. G. Harvey, F. Kelkensberg, D. Brambila, W. K.Siu,
G. Gademann, O. Smirnova, M. J. J. Vrakking, Imaging the elec-
tronic structure of valence orbitals in the XUV ionization of aligned
molecules, J. Phys. B: At. Mol. Opt. Phys. 47 (2014) 124017.
doi:{10.1088/0953-4075/47/12/124017}.

[48] D. S. Brambila, A. G. Harvey, Z. Masin, J. D. Gorfinkiel, O.Smirnova, The
role of multichannel effects in the photoionization of the NO2 molecule: an

28

http://dx.doi.org/{10.1016/0010-4655(94)90073-6}
http://dx.doi.org/{10.1088/0953-4075/47/21/215005}
http://dx.doi.org/{10.1088/0953-4075/47/12/124017}

ab initio R-matrix study, J. Phys. B: At. Mol. Opt. Phys. 48 (2015) 245101.
doi:{10.1088/0953-4075/48/24/245101}.

[49] W. J. Brigg, A. G. Harvey, A. Dzarasova, S. Mohr, D. S. Brambila,
F. Morales, O. Smirnova, J. Tennyson, Calculated photoionization cross sec-
tions using Quantemol-N, Jap. J. Appl. Phys. 54 (2015) 06GA02.

[50] M. Khamesian, N. Douguet, S. F. dos Santos, O. Dulieu, M.Raoult,
W. J. Brigg, V. Kokoouline, Formation of CN−, C3N−, and C5N−

Molecules by Radiative Electron Attachment and their Destruc-
tion by Photodetachment, Phys. Rev. Lett. 117 (2016) 123001.
doi:{10.1103/PhysRevLett.117.123001}.

29

http://dx.doi.org/{10.1088/0953-4075/48/24/245101}
http://dx.doi.org/{10.1103/PhysRevLett.117.123001}

	Introduction
	Theory
	Symbolic evaluation, prototyping and expansion
	Matrix classes
	Classes 1 and 3
	Classes 2 and 8
	Classes 5 and 6
	Class 7
	Class 4
	Sparsity and diagonalization

	The UK-molecular R-matrix codes

	MPI-SCATCI
	Build parallelization
	Classes 2 and 8
	Classes 1, 3, 5, 6, 7
	Class 4

	Matrix distribution
	Matrix formats
	Diagonalization

	Large Integrals
	Shared Memory

	Performance
	Phosphoric acid
	Beryllium mono-hydride

	Conclusion
	Acknowledgements

