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1 Introduction

This work describes the distributed memory parallelisation of the NAME model. It is assumed
the reader is familiar with the existing threaded implementation [1].

The following section provides a description of the components developed to handle the message
passing implementation, and the context in which they are used. (It is also assumed that the
reader is familiar with message passing concepts.) A further section discusses a number of
standard benchmarks to assess the performance of the new parallel code and identifies residual
performace bottlenecks.

The final section discusses a number of open issues, advice for users, and known issues.

2 Distrubuted Parallelism

2.1 General comments

A distributed memory implementation naturally involves a certain degree of complexity above
and beyond that of a serial code. To manage the complexity a number of elements of "infra-
structure" were developed individually. These are discussed in the following sections.

2.2 The message passing interface context

A number of simple container types to hold information on the message passing interface (MPI)
environment are provided. These include a NameMPIComm_ which aggregates communicator
handle, size, and rank.
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An overall context NameMPIContext_ is provided to aggregate information on a number of
communicators. While these communicators may ultimately be relevant for the code, only one
duplicated from MPI_COMM_WORLD is active at the time of writing.

The context is initialised once following MPI_Init(), and remains unchanged thereafter.

2.3 Logging and Errors

Logging of messages to standard output and standard error, and to designated files is provided
in parallel by a MsgHandler_ object. Options for file output to a single MPI/IO shared file,
or to one file per MPI rank via standard Fortran I/O are provided.

A message handler must be initialised in the parallel context,

globalMsgHandler = msgHandlerInit(globalMPIContext)

after which messages to standard output are available via

call message(messageText, ...).

The log and error file handles are initialised in a separate step:

call msgHandlerSetUp(globalMsgHandler, ...)

after which message() will propagate to the log file and error file (as appropriate) in addition
to standard output.

For backwards compatibility with the serial version, where the sole method for issuing messages
was

call message(messageText, errorCode, ...)

the call injects the globalMsgHandler object and defers action to the procedure msgHandlerMessage(...).
message() retains integer errorCodes (cf. ErrorCode_ defined below). The msgHandler_
object carries relevant state including the current worst error code to date on a per-rank basis.

It is expected that normal termination will give rise to a sequence of:

call msgHandlerSynchronise(...)
call msgHandlerExitMessage(...)
call msgHandlerFinalise(...)

to produce a consistent picture of the worstErrorCode on all ranks and an appropriate
closing message.

2.4 Random number generation

Random number generation for particle updates is performed on a per-particle basis with the
current state being a component of the Particle_ type:

type :: Particle_
...
integer (int32) :: iRNG(2)
...

end type Particle_
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This allows both thread-safe [1] per-particle updates, and the communication of the state iRNG
with the particle structure if the particle needs to be moved between MPI tasks. The random
number generator itself is L’Ecuyer (1988).

Note. The implementation of the GaussB() always discards one random variate (presumably
for thread-safety reasons in a previous implementation). An alternative implementation

mathsRandomGaussian2()

is provided which allows both to returned to the caller. For convenience there is also mathsRandomGaussian1()
returning one, and overloaded versions to allow real32/real64 arguments.

2.5 Particle storage and memory management

An ’array’ container is provided to hide details of memory management related to particles from
the application space.

Storage for particles, extras, and masses is provided via the ParticleArray_ type, which
may be initialised with a maximum capacity per MPI rank, e.g.:

a = particleArrayInit(maxParticles, maxExtras, nSpecies)

The preferred way to "add’ and ’remove’ (perhaps better named as ’activate’ and ’deactivate’)
particles is via

call particleArrayAddParticleExtraMass(a, particle, extra, masses)
call particleArrayRemoveParticle(a, iP)

where iP is a local particle index in storage Using this interface will prevent accidents involving
memory management. (However, clients are still responsible for thread safety at the moment.)

Restart content write/read for existing objects are provided via

call particleArrayRestartWrite(a, unit, ierr)
call particleArrayRestartRead(a, unit, ierr)

Resources are released via

call particleArrayRelease(a)

when no longer required.

2.6 Patch structure

A facility to store particles in "patches". The patch structure provides a way to organise the
decomposition of particles in parallel. A number of patches is defined by the user (specified
by a single integer nlevel, whence the number of patches is nPH = 4**nlevel) and may be
viewed in either a one-dimensional picture 1:nPH or a two-dimensional picture (1:nxPH,
1:nyPH) with nxPH = nyPH = 2**nlevel.

The mapping between the one-dimensional picture and two-dimensional picture is that of a
standard Peano-Hilbert curve. (See Fig. 1.)

Assignment of particles to patches can take place in two different ways.
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41: 2D (1:2, 1:2) or 1D (1:4) 42: 2D (1:4, 1:4) or 1D (1:16) 43: 2D (1:8, 1:8) or 1D (1:64)

Figure 1: The Peano-Hilbert picture with (from left to right) 41 patches, 42 patches, and 43

patches. The one-dimensional picture is represented by the bold blue line. Higher levels follow
the same self-similar pattern.

1. Logical case (no Eulerian grid): particles are mapped to the logically one-dimensional
patch structure via unique particle index iUP and appropriate modular arithmetic. The
mapping is provided by patchLogicalIndex().

2. Eulerian grid. Particles within the horizontal extent of the Eulerian domain are mapped
to the two-dimensional patch structure based on their horizontal position in the Eulerian
coordinate system.

2.6.1 Decomposition

Patches, and therefore particles, are always distributed between the available MPI ranks in the
one-dimensional Peano-Hilbert picture 1:nPH. Any given rank will "own" a number of patches
nLocal being [myMin:myMax] in the global picture with offset myOffset. Patches are
allocated to MPI ranks in contiguous blocks with rank 0 taking the left-most patches in the
one-dimensional picture, and so on. (See figure 2.)

At the moment, no attempt at dynamic load balance is present, and the decomposition is static.
The default decomposition simply attempts to balance the number of patches between MPI
tasks. In the logical particle mapping, this should automatically provide each patch with ap-
proximately equal numbers of particles, and so balance load (in terms of particle number at
least) between MPI tasks.

myMin myMax

myOffset

nLocal
nGlobal

Figure 2: A schematic showing the a decomposition of patches between MPI tasks in the one-
dimensional Peano-Hilbert picture. A given MPI task owns a number of patches (blue oval)
with a global offset.
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2.6.2 Eulerian case

If present, a logically rectangular horizontal Eulerian grid is mapped to the logically square
two-dimensional Peano-Hilbert picture in blocks (of type PatchGridBlock_). Each block
is itself logically rectangular and has an offset position in the full Eulerian horizontal grid. (See
Fig. 3.)

This allows particle horizontal position to be mapped to the two-dimensional patch picture. For
chemistry, this means that all particles within a given Eulerian grid cell are held on the same
patch, and therefore the same MPI task. Particles in each horizontal patch (or column) are
further mapped to an individual vertical level or grid cell (see "Chemistry" below).

A given simulation may involve particles which can cross the boundary of the horizontal Eule-
rian domain. In this case, particles outside the Eulerian domain map to patches using the logical
mapping, while particles inside the Eulerian domain map using the "geographical" picture. All
particles map to a patch, and a given patch may contain both "logically" and "geographically"
mapped particles. Movement of particles between patches is handled in Case.F90 and MPI
communication in mpiPatchTransfer.f90.

Note that if the number of MPI tasks is 2n, a uniform decomposition in the one-dimensional
patch picture corresponds to a regular decomposition in the two-dimensional picture. This in
turn corresponds to a regular decomposition of the horizontal Eulerian domain (if present).
However, for a general one-dimensional decomposition, this is not true.

Figure 3: A schematic showing the a decomposition of Eulerian grid points (with a 5×3
horizontal Eulerian grid, top left) in the two-dimensional Peano-Hilbert picture (top right) and
the one-dimensional picture (bottom) with nlevel = 1, ie., 4 patches.

2.6.3 Life Cycle and Particle Storage

The patches structure is instantiated via

patches = patchesInit(ctxt, nlevel [, patchGridArg])

nlevel is chosen by the user, and controls the number of patches, which is 4**nlevel in the
one-dimensional PH picture (or 2**nlevel × 2**nlevel in the two-dimensional picture).
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If an Eulerian grid is present (ie., chemistry is active) an optional PatchGrid_ argument
provides a container to supply details.

A particle may be located in the patch structure via a call

iPatch = patchIndex(patches, coords, particle)

Storage in the patch structure is currently an integer indirection to the main array of particles.
A number of mechanisms are provided to add particles, the basis of which is to add the integer
indirection iP to an individual patch:

call patchAddParticle(patches%patch(iPatch), iP)

Particles are removed by marking patch%iP() = PATCH_INDEX_NULL followed by whole
patch deletion operation

call patchClearOut(patches%patch(iPatch))

A future implementation might consider providing one particle array per patch for actual storage
(see particleArray.f90).

Patch resources are released via

call patchesRelease(patches)

2.7 Particle communication

2.7.1 Data types

Particle communication is achieved via MPI derived data types. Individual message components
are provided by defining MPI data types (MPI opaque handles) corresponding to each of:

ShortTime_
Particle_
Extra_
ParticleMessage_

Message data may be aggregated in the form of a fixed size ParticleMessage_ container
type. This has its own MPI data type to allow communication of a complete particle or array of
particles.

Data type handles are obtained by the application via an ParticleMPIDataTypes_ con-
tainer, e.g.:

handles = mpiParticleDataTypes()

and released (to avoid leaking handles) via

call mpiParticleDataTypesRelease(handles)

There is little or no overhead observed in this process.
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2.7.2 Message passing

Communication of particles between ranks is closely related to the patch structure and therefore
the decomposition of patches. Transfers of particle information between patches may occur as
and when particles change position and hence patch.

There are broadly two cases to be considered:

1. "Internal" transfers where the old patch and the new patch are held on the same MPI rank.

2. "External" transfers where the old patch and the new patch are held on different MPI ranks
and require information to be passed via an MPI message.

Two data structures are provided to facilitate this process. The first is a message meta-data
container TransferListItem_. This stores the identity of the old patch, the new patch, the
new MPI rank, and so on, for each particle that needs relocation.

The entire exchange is encapsulated via a transfer request object TransferReq_, which holds
relevant lists of particles, message buffers and so on.

A typical message exchange might follow a change in particle positions. With an existing
patches structure, a TransferReq_ object is created:

req = patchTransferRequest(patches)

Each local particle should then be interrogated to see if the new position necessitates a change
in patch. If so, a meta data item is added to the request; schematically:

if (internal) call patchTransferRequestAdd(req, tid, item)
if (external) call patchTransferRequestAdd(req, tid, item, data)

Threading (if required) is explicitly included via the thread index tid. Note only external
transfers require the actual particle data; internal transfers use the meta data item to relocate
the particle in the patch structure via shared memory.

Clients may call
call patchTransferSendRecv(patches, req, coords, pa)

to execute the transfer in one go.

Communication is actually a three-stage process to allow possible overlap of communication
with independent work:

call patchTransferRequestSend(patch, req)
...
call patchTransferInternal(patch, req%intList)
...
call patchTransferRequestRecv(patch, req)

When the final receive has returned, the client may use the updated particle data (incoming parti-
cles have arrived and outgoing particles have been removed). patchTransferSendRecv()
combines all three steps.

With either mechanism, the request must be completed via a call to
call patchTransferRequestRelease(req)

to release resources.

8



2.8 Release of particles in parallel

All sources are replicated so that source information is available on all MPI tasks. Particle
release from sources is also replicated on all MPI tasks: every task generates all particles. Once
a particle has been generated, it can be examined to see which MPI rank should "own" the
particle.

The owner actually stores the particle, while all other MPI simply ignore it. This process
replicates generation of unique particle indices (iUPs) and initial random number state for the
particle. This allows a decomposition independent result which does not depend on the number
of MPI tasks.

Once appropriate effective source parameters has been identified, there are two steps:

1. call caseReleaseParticle(...)
Assigns values to a particle, extra pair;

2. call caseAddParticleExtraMassLocal(...)
Determines which patch, and therefore which MPI rank, owns the particle, and arranges
storage as required.

The current number of particles globally (before any new ones are released) is synchronised at
the start of the process to allow a check against the maxParticles limit. A similar check
is present for the extras. No particle storage is actually ’allocated’ until the point at which
ownership is determined.

2.9 Chemistry

2.9.1 Patches

A number of additional data structures are used to construct chemistry “patches”. The first is
the PatchChemistry_ type, which holds an array of type PatchColumn_, each of which
represent a vertical column at a given horizontal position in the Eulerian grid. Each column
allows assignment of particles to individual vertical levels.

The horizontal decomposition in the chemistry patches follows the decomposition in the Peano-
Hilbert picture. In general, each PH patch holds a block of horizontal Eulerian grid points which
must be further one-dimensionalised via the patchGridBlock1D() mechanism. The num-
ber of chemistry patches (i.e., horizontal grid points in the Eulerian grid) is then chem%nLocal.

A one-dimensional loop over local chemistry patches or columns is then typically

do iC = 1, chem%nLocal
iX = chem%patch(iC)%iXE ! Eulerian iX
iY = chem%patch(iC)%iYE ! Eulerian iY
! ... and a loop over the vertical
do iZ = 1, chem%patch(iC)%nZ

...
end do

end do

where chem%patch(iC)%iXE,iYE provide location in the horizontal Eulerian grid.
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A utility PatchMap_ structure allows mapping between the horizontal Eulerian grid (iX,
iY) to the one-dimensional horizontal patch (Peano-Hilbert) picture.

2.9.2 Particle location in the patch structure

Particles are assigned to the appropriate horizontal patch at the point of release. Allocation of
particles to the appropriate chemistry grid box at the current time step is then performed as a
two-stage process:

1. call caseAssignParticlesToH(...)
re-assigns particles to horizontal patches to allow for any change in position. This may
require communication.

2. call patchAsssignParticlesToZ(...)
Having been sorted in the horizontal patch structure, particles involved in chemistry may
be further sorted in the vertical.

The chemistry update can then take place local to each MPI task. For the purposes of output,
the global Eulerian concentration is reconstructed on rank 0 (only).

2.9.3 Chemistry state

Quantities which are required by the chemistry procedure (above and beyond those coming from
the chemistry scheme itself) and that have memory between one chemistry update and the next
are held by the object ChemState_.

The ChemState_ object may be initialised with knowledge of the ChemistryDefn_ and
the Patches_ structure:

chemState = chemistryStateInit(chemistryDefn, patches)

and is updated in the chemistryUpdate(). Resources are released via

call chemistryStateRelease(chemState)

The ChemState_ object holds local quantities in the one-dimensional chemistry patch decom-
position with extent 1:chem%nLocal on each MPI task. The local quantities include

chemBackField(1:nBackFields, 1:nZ, 1:nLocal)
deltaO3(1:nZ, 1:nLocal)

being the background field concentrations and an ozone-related field. A replicated initBackFields
flag controls initialisation.

2.9.4 Chemistry update

Routine chemistryUpdate() updates particle masses, the chemistry state, and the Eule-
rian field concentrations locally on each MPI rank. Threaded parallelism is used to further
decompose the local chemistry patches. Note that the grid box volumes are recomputed at each
chemistry update to allow that they vary in time. (There is no significant penalty in doing this if
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the vertical grid is fixed). Chemistry grid boxes with no particles are treated via the back fields,
while others are treated using the currently active chemistry scheme.

Unified model data is (potentially) read from file at each update on each MPI task and the locally
relevant data extracted in chemsitryBackgroundFieldsFromUM().

The Eulerian field concentrations are global in extent. This means only the relevant portion of
the Eulerian field can be updated on any one MPI task.

It is assumed that the patch description of the disposition of particles is up-to-date on entry.

2.9.5 Splitting

The splitter utility is provided to help to produce a decomposition independent particle splitting
procedure for particles which carry mass above and beyond a prescribed limit. The particle mass
limit is based on PM10 in this implementation, but other criteria could be imagined.

Each MPI rank determines which local particles meet the criteria for splitting. A globally
replicated list of relevant particles may then be constructed which allows generation of new
particles to be replicated on all MPI tasks. Global agreement on this list allows a decomposition
independent result.

Construction of the global list relies on a sort, which is currently carried out in a naive imple-
mentation which is suitable for a modest number of particles.

The call sequence should first create a "splitter" object with the appropriate with communicator
and list of active species:

splitter = splitterPM10(communicator, specieses)

Each rank is then required to determine the number of local particles which meet the criterion
for splitting via splitterYield() and the consequent number of new particles. These are
collected by a call

call splitterCollect(splitter, nLocal, nNewLocal)

which performs the necessary reducetion to provide a global total. splitterCollect() also allocates
space for a local list of particle meta data which will allow the global list to be formed.

Each rank should then undertake a second sweep through local particles to assign the relevant
meta data items in the SplitterList_ data structure splitter%listLocal(1:nLocal).
A call to

call splitterMerge(splitter)

generates a replicated global list splitter%listGlobal(1:nGlobal). This may be
used to perform replicated actions on particles to be split.

Resources are released via
call splitterPM10Release(splitter)

The splitter has no direct dependence on the method of storage of particle information here
beyond the assumption that a rank 1 array masses(:) holds particle masses with indices as
specified in specieses%iSpecies2Particle(:).

The full splitting procedure is implemented in caseSplitMassiveParticles().
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2.10 Output

2.10.1 Lagrangian quantities

Contributions to Lagrangian output quantities may occur on all active MPI tasks with particles.
An MPI operation is therefore (potentially) required to consolidate local contributions to a single
aggregate field on rank zero. This field is suitable to process for output as in serial.

For each Lagrangian field, a reduction operation, which is determined for individual requests
via fieldReqLagrangianQuantityToMPIOp(), takes place at appropriate time steps.

2.10.2 Eulerian quantities

If chemistry is active, each MPI task makes local contributions to the replicated global Eulerian
concentration. A “gather” operation is therefore required to reconstruct a unified picture of the
concentration (on rank zero only). The concentration is then appropriate for output on rank zero
if required.

No action is required in serial.

2.11 Testing

2.11.1 Assertions

A C-like assert()macro is provided via C-preprocessor directives in the file assertion.h.
The actual implementation is via Fortran stop in the external procedure assertion_stop().

A wrapped version assertion() declared with a pure interface is provided to allow asser-
tions to be placed in pure procedures. This is a slight-of-hand which may generate a compiler
warning (e.g., with Cray ftn).

2.11.2 Unit tests

A set of unit tests are provided by the modules test*.f90 in the test directory. Each module
provides a driver test*Run() which takes a NameMPIContext_ as the sole argument. The
driver is responisble for running individual tests.

Test failures are reported by means of the non-fatal assertion nameMPIContextAssert().

Tests may be run in serial or in parallel with a arbitrary number of MPI tasks/OpenMP threads
(up to a reasonable maximum).

A number of the tests require reference data files to exist (the tests will be skipped if the files
are not present).

The overall test driver is test.f90.
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2.11.3 Reproducability

Owing to a number of changes, the updated version of the code does not produce exactly
the same results as the original version. Development was staged so that the changes were
introduced episodically, allowing reproducability to be checked up to the point of the change,
and again after the change. There were three such changes. First, and fundamentally, is the
change in random number generation associated with the removal of the global random state
(used at particle release). Second and third, and relating only to chemistry, are changes in
the negative mass redistribution of species when re-associated with particles at the end of
the chemistry step, and particle splitting. In both these cases, the new algorithm maintains
reproducabilty independent of decomposition of work between threads and/or MPI tasks.

As a separate measure of reproducability, it has been verified that the results are the same
(to within possible round-off) independent of the number of threads and/or MPI tasks for the
standard benchmark problems.

3 Benchmarks

The following sections provide a summary of the benchmarks performed as part of the work. For
brevity, details of the protocol for each benchmark on both ARCHER and Cirrus are relegated to
Appendix 1. Likewise, an abbreviated summary of timings is presented in each case to illustrate
salient features. The timings presented in the summary are typically based on four repeat runs
of each benchmark (unless otherwise stated).

The description covers a number of “standard” benchmarks which have been used to assess the
performance of the distributed memory version against the starting version. These standard
benchmarks are, of necessity, limited in size. Later sections go on to describe a series of
“enhanced” benchmarks which are designed to exercise the increased memory capacity of the
distributed memory version (and so may not be practical in the original version).

For each benchmark, performance of version 7.2 (“SVN 68”) is compared with an updated
version (e.g., “SVN 359”). Benchmarks are typically run in serial (1 thread), on 1 socket (12
and 18 threads on ARCHER and Cirrus, respectively), and on a full node (2 sockets). All
benchmarks run 1 thread per core, unless it is explicitly stated that two hardware threads per
core are utilised. When run on more than one MPI task, benchmarks generally seek to use one
MPI task per node, and one thread per core within the node. Exceptions are noted in the text.

3.0.1 Hardware

The two hardware platforms considered are:

1. UK Tier-1 ARCHER. This will refer to the main Cray XC30 service machine with nodes
containing two 12-core Intel Xeon E5-2697 v2 (Ivy Bridge) chips. Each core is clocked
at 2.7 GHz and can support two threads in hardware. Within a node, two sockets provide
access to two 12-core chips connected by two QuickPath Interconnect (QPI) links. Each
core can issue 4 double precision floating point multiply and add operations per cycle
(8 flop/cycle), providing 21.6 GFlop/s per core, or roughly 0.52 TFlop/s per node. The
thermal design power rating is 260 W per node.
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2. UK Tier-2 Cirrus. One node has two 18-core Intel Xeon E5 2695 v4 (Broadwell) pro-
cessors. Each core runs at 2.1 GHz and supports 2 threads in hardware. Each core can
issue 4 double precision floating point multiply-add instructions per cycle (vector length
4 doubles), giving 16.8 Gflop/s per core, or about 0.60 TFlop/s per node. Two sockets
have thermal design power rating of 290 W.

ARCHER and Cirrus have 64 GB and 256 GB DRAM per node, respectively.

3.1 Standard VAAC benchmark

The benchmark represents an eruption of Askja in central Iceland for the Volcanic Ash Advisory
Centre (VAAC). No chemistry is present. Meteorological data are “cut out” from the Unified
Model, there being 14 cut-out parts globally. The update-on-demand mechanism means one
part (the North Atlantic including Iceland) is required at the start of the run, increasing to five
parts (the entire Northern Hemisphere above the tropics) at the end of the run as ash is swept
away from the source. Each part consists of around 250 MB of data. Data from 00:00 4th July
2015 is at 3-hourly intervals.

Initially there are no particles; particles are then released at a constant rate of 15,000 per hour,
with the total number of particles reaching a maximum of 720,000 after around 48 hours after
which the eruption ceases. The maximum number of particles specified in the input file is 10
million.

To provide a benchmark of around 1–2 hours in serial, NAME is run for 6 days model time; this
requires 136 “met modules” to be read from disk.

3.1.1 ARCHER results: standard VAAC benchmark

A summary of the results for versions SVN 68 and SVN 324 of the code is given in Table 1.
For the standard VAAC problem, the predominant sections of the code are the particle time step
loop (LPPT) and the processing and output of data to file (P/Output) which are shown in the
Table. Not included is a small (serial) overhead for the particle release mechanism (about 30
seconds). Also not shown is the relatively small contribution of the computation of particle
results (around 50 seconds in serial); however, there is relatively little thread-level parallelism
in this code owing to a significant number of critical sections.

The benchmark shows that in serial version at SVN 68 , a significant fraction of the time is
spent in the particle loop (LPPAT). This is confirmed by a MAP profile, which shows the
breakdown includes oneParticleTimeStep at 47%, and calcParticleResults at
29% of the total time. The input time for the meteorological data (here subsumed into the
LPPAT figure) is around 250 seconds (with some variability at the 10% level attributed to file
system performance).

In the SVN 68 results the LPPT section scales reasonably: the speed up on 12 threads is 7.4.
However, there is little improvement beyond one NUMA region. The MAP profile suggests
potential issues with synchronisation in whichFlow() (rising to 15-20% of the total execution
time on 12-24 threads) are the source of this limitation. In contrast, the SVN 324 version (which
removes a number of synchronisation issues) performs more robustly (a speed up 16 on 24
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Execution Section SVN 68 SVN 324
Model Time (s) Speed up S1 Time (s) Speed up S1

Tasks: 1 LPPT 5900 1.0 6420 1.0
Threads: 1 P/Output 510 1.0 630 1.0

Total 6600 1.0 7200 1.0
Tasks: 1 LPPT 800 7.4 660 9.7
Threads: 12 P/Output 380 1.3 310 2.0

Total 1320 5.0 1060 6.8
Tasks: 1 LPPT 550 10.7 400 16.0
Threads: 24 P/Output 430 1.2 310 2.0

Total 1130 5.8 810 8.9
Tasks: 2 LPPT — — 250 25.7
Threads: 24 P/Output — — 320 2.0

Total — — 660 10.9
Execution Section SVN 68 SVN 324
Model Time (s) Speed up S1 Time (s) Speed up S1

Tasks: 1 LPPT 5350 1.0 5270 1.0
Threads: 1 P/Output 390 1.0 430 1.0

Total 5890 1.0 5820 1.0
Tasks: 1 LPPT 460 11.6 440 12.0
Threads: 18 P/Output 360 1.1 210 2.0

Total 940 6.3 500 11.6
Tasks: 1 LPPT — — 190 27.7
Threads: 36 P/Output — — 210 2.0

Total — — 500 11.6
Tasks: 2 LPPT — — 110 47.9
Threads: 36 P/Output — — 230 1.9

Total — — 420 13.9

Table 1: Top panel: ARCHER summary for a standard VAAC benchmark comparing SVN 68
with the distributed memory version at SVN 324. Times in seconds are recorded for the particle
time step loop (LPPT), processing and output of data to file (P/Output) and the overall total time
to solution. Four runs are presented (from top to bottom): 1 MPI task and 1 OpenMP thread (ie.,
in serial), 1 task and 12 threads, 1 task and 24 threads, and 2 MPI tasks, each with 24 threads.
In each case, a speed up S1 is computed based on the corresponding serial time.
Bottom Panel: The same summary for Cirrus run on 1, 18, and 36 threads (single MPI task), and
36 threads on each of 2 MPI tasks. It was not considered worthwhile running a full benchmark
test for 36 threads at SVN 68 owing to lack of scaling.

cores). The serial time is actually slightly slower owing to code changes, but the threaded par-
allelism is more efficient. Synchronisation remains in the on-demand reading of meteorological
data.

The distributed memory version provides some benefit for this problem, but the scaling is
ultimately hampered by serial output operations.
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Execution Section BENCHMARK VE1 BENCHMARK VE2
Model Time (s) Speed up S1 Time (s) Speed up S1

Tasks: 1 LPPT 4290 1.0 4400 1.0
Threads: 24 P/Output 220 1.0 1640 1.0

Total 4940 1.0 6540 1.0
Tasks: 2 LPPT 2180 2.0 2240 2.0
Threads: 24 P/Output 270 0.8 1780 0.9

Total 2690 1.8 4320 1.5
Tasks: 4 LPPT 1140 3.8 – –
Threads: 24 P/Output 300 0.7 – –

Total 1580 3.1 – –

Table 2: Enhanced VAAC benchmarks VE1 (left) and VE2 (right) run on ARCHER. Times in
seconds for the given sections of the code are based on four repeats in each case. The speed
up S1 for each section is based on the corresponding time on 1 node (24 threads). It was not
considered worthwhile extending VE2 to 4 nodes owing to lack of scalability with increased
output grid resolution.

3.1.2 Cirrus results: standard VAAC benchmark

The corresponding results for the same standard VAAC benchmark run on the Tier-2 Cirrus
system at SVN 68 and SVN 324 are also summarised in Table 1. We note that it was not
considered worthwhile running a full benchmark test for the SVN 68 version on 36 threads
owing to lack of scaling.

The picture here is similar to that seen on ARCHER. The overall time-to-solution is slightly
improved compared with ARCHER, which is probably attributable to improved memory perfor-
mance. Times in serial for the two SVN versions are similar, and threaded parallelism is again
reasonably effective in the LPPT section. Distributed memory parallelism is also reasonably
effective here in the LPPT section. Overall distributed memory scaling is restricted by residual
serial fraction including the output and the release of particles.

3.2 Enhanced VAAC benchmarks

The standard VAAC benchmark takes around 4GB of memory (high-watermark) on a single
node; there is clearly no need to extend a benchmark of this scale to more than one node for
the purposes of providing more memory. To test performance against larger problem sizes, two
enhanced benchmarks are considered. The first, denoted benchmark VE1, increases the number
of particles by a factor of 10, simply by increasing the source production rate (150,000 per hour
cf. 15,000 per hour). This gives a maximum of 7,200,013 particles. The second additional
benchmark, denoted VE2, increases both the number of particles as in VE1, but also increases
the output grid vertical resolution by a factor of 10 (220 levels at 250 feet resolution cf. 22 levels
at 2500 feet resolution).

Each of the benchmarks is run at SVN 359 on 1 and 2 nodes of the ARCHER system using
24 threads on each node. The results were extended to 4 nodes for the VE1 benchmark only. In
each case the Cray compiler environment was used. A summary of the results is presented
in Table 2. As in the standard VAAC benchmark, the time is predominantly in LPPT and
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processing output, so figures are limited to these sections.

There are two clear results. First, the time for LPPT scales well as the number of MPI tasks is
increased. This is not unexpected as the size of the problem as been increased. For benchmark
VE1, the second clear result is that the time to process the output increases with the number of
MPI tasks. While the output itself is serial, an increase is to be expected as the MPI_Reduce()
required for each output request generates a significant communication overhead (some of the
messages are large). For benchmark VE2, where the increase in the output grid size is a factor
of 10, there is a similar increase in the cost. This means output to file completely dominates the
scaling.

3.3 Chemistry benchmark

The chemistry benchmark is based on a regional model for the United Kingdom which extends
to north west Europe (roughly 14W–20E, 42–62N), having resolution in the horizontal Eulerian
grid of 226×222 points (around 10 km). There are 18 vertical levels with varying resolution
extending to around 5000 m above ground level. The chemistry scheme itself [3] includes 42
different chemical species.

The model is driven by wider-area regional meteorological data at resolution of around 0.5o

in the horizontal and 50 vertical levels. The extent is roughly 100W–25E and 10–80N. Data
is at three hourly intervals from 00:00 on 1st June 2008. The time extent of the benchmark
was chosen to provide a serial benchmark taking about 1–2 hours in wall clock time in serial
on the relevant hardware. The final choice was to to read six data sets (each around 50MB)
representing around 15–18 hours model time.

There are a large number of sources which account for the generation of particles carrying
the various chemical species. These sources include those representing biological land surface
process at specific locations, pollution sources such as traffic, and so on. Sources are time
dependent and relevant for the period of interest.

The input gives rise to a number of particles reported at around 4.1 million initially, rising to
7.7 million by the end of the run. It should be noted that a significant number of particles are
generated and then immediately removed; the total number of particles generated in the course
of the simulation is around 180–200 million.

The final memory requirement for the benchmark on ARCHER is around 5.8GB, rising slowly
with the number of particles at the end of execution.

3.3.1 ARCHER results: Chemistry benchmark

Results are reported for the chemistry benchmark in Table 3, which is a comparison of the
original code at SVN 68, and an updated code at SVN 324. As the performance of the par-
ticle sections (LPPT etc), and output, are broadly similar in character to the VAAC case, we
concentrate on the parts relevant specifically to the chemistry.

There are a number of issues to be highlighted in the results. In serial the benchmark takes
around 6,000 seconds; at SVN 68 the main contributions to this total are around 2,500 seconds in
the particle update and accumulation for output, around 1500 seconds for release from sources,
and another 1500 seconds for the chemistry itself. Of the chemistry contribution, about 200
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Execution Section SVN 68 SVN 324
Model Time (s) Speed up S1 Time (s) Speed up S1

Tasks: 1 Total 5880 1.0 5770 1.0
Threads: 1 Release 1480 1.0 1320 1.0

Chem. Tot. 1430 1.0 1150 1.0
Binning? 220 1.0 270 1.0

Loop 1210 1.0 850 1.0
Tasks: 1 Total 2730 2.2 1760 3.3
Threads: 24 Chem. Tot. 960 1.5 63 18.3

Binning? 220 1.0 16 16.9
Loop 740 1.6 39 21.8

Tasks: 1 Total — — 1740 3.3
Threads: 48 Chem. Tot. — — 55 20.9

Binning — — 16 16.9
Loop — — 29 29.3

Tasks: 2 Total — — 1690 3.4
Threads: 48 Chem. Tot. — — 39 29.5

Binning — — 13 20.8
Loop — — 14 60.7

Table 3: ARCHER standard chemistry benchmark summary showing the time taken in seconds
for various execution models (MPI tasks times threads). The detail shows times for the total
time related to chemistry, which is made up of binning the particles to chemistry grid cells,
the chemistry scheme itself (“Loop”) and chemistry splitting/diagnostics. It can be seen that
while the original SVN 68 has rather poor threaded performance, the updated code SVN 324
much better on a single node. Note the time for release of particles is shown only once, but is
a constant serial overhead in all cases. Timings for SVN 68 marked ? are based on profile data
rather than internal timing.

seconds is required to bin particles to chemistry grid cells in the Eulerian grid, while the balance
is the execution of the chemistry scheme itself (the “Loop”). It should be noted that the release
presents a significant serial fraction (and which remains in all cases, so it is not repeated in
Table 3). In the original code, the binning was also a purely serial overhead.

At SVN 68 the scaling of the threaded implementation of the chemistry is rather poor. A profile
confirms that of the approximately 20% of time in the serial case spent in the chemistry update,
some 9.1% and 6.2% are spent in chemistryScheme() and calcZenithAngle(), re-
spectively. The profile further identified a significant issue with lock contention arising from
calls calcZenithAngle() to routines which perform Fortran internal writes. These make
use of the thread locking mechanism (presumably because some shared internal buffer is used
in the implementation). The proportion of time spent in these routines increases with increasing
number of threads (25% of the total on 24 threads).

The message passing version (SVN 324) uses a new implementation of the both the binning
procedure and the chemistry loop. The binning procedure must be preceded by the communi-
cation required to ensure all relevant particles are resident on the appropriate MPI task, but can
itself include threaded parallelism. Work on each chemistry grid box can then take place on
individual MPI tasks in the chemistry loop. The threaded parallelism in the loop is improved by
three main measures: 1. removal of lock contention arising from calcZenithAngle() via a
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new implementation; 2. removal of 4-dimensional arrays to store local chemistry concentrations
(only a local vertical column is required); and 3. improved parallelism in the loop itself by
moving to a one-dimensional decomposition. The time for the particle communication, along
with splitting and related diagnostics, is accounted for under the Chemistry Total.

The results show that the threaded performance of the new implementation is reasonably effec-
tive. The degree of improvement makes it worthwhile to use 2 threads in hardware on each core
(usually referred to as “hyperthreading” on Intel hardware), which provides some improvement
in the chemistry loop itself. (This actually suggests there is still significant memory latency
to be hidden in this part of the computation.) Increasing the number of MPI tasks provides
some improvement in the chemistry (each task deals with part of the chemistry domain), but
the overall performance is limited by the serial overhead of releasing particles from a very large
number of sources in this benchmark.

3.4 Standard greenhouse gas benchmark

The greenhouse gas benchmark is an example of a “backwards-in-time” simulation that can be
performed with NAME to assess the origin of material arriving at a point of interest. The domain
of interest for this problem is again the UK and the surrounding North Atlantic region.

Meteorological data are high-resolution (around 1.5km in horizontal, and 57 vertical levels)
at one hour intervals between 2nd September 2017 and 13th September 2017, and are based
on “cut-outs” from a global domain. For the backwards in time simulation the meteorological
data cannot be read on an “on-demand” basis; this means the read and process steps for all
meteorological data are effectively serialised. This will become evident in the profiles.

There is effectively one source producing 20,000 particles per hour for the first 24 hours of the
simulation, giving rise to a particle number which grows linearly to 480,000. The number is
stable for around 48 hours, before falling as particles leave the domain of interest. Around half
(240,000) are left at the end of the simulation.

3.4.1 ARCHER results: standard greenhouse gas benchmark

Results for the standard greenhouse gas benchmark run on 1, 12, and 24 threads on ARCHER
are shown in Table 4. Again, focus is restricted to parts of the code which are significant for
this particular problem. The results show performance is similar in the original and the new
versions, with the main particle loop parallelising reasonably well. The clear bottleneck for this
benchmark is the serialised reading and processing of the meteorological data. (This being the
case, results for larger numbers of MPI tasks are not reported for this problem.)

3.4.2 Enhanced greenhouse gas benchmarks

The number of particles in the standard greenhouse gas benchmark (480,000) was introduced
for a simulation using lower resolution meteorological data (around 10km in the horizontal). It
is therefore reasonable to require an increase in the number of particles used by a factor of 10 in
each horizontal direction. One could also require a further increase in the number of particles to
increase statistical accuracy.
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Execution Section SVN 68 SVN 413
Model Time (s) Speed up S1 Time (s) Speed up S1

Tasks: 1 LPPT 5300 1.0 5660 1.0
Threads: 1 MetRead 650 1.0 640 1.0

MetProcess 610 1.0 670 1.0
Total 6850 1.0 7230 1.0

Tasks: 1 LPPT 530 10.0 510 11.1
Threads: 12 MetRead 620 1.0 640 1.0

MetProcess 610 1.0 670 1.0
Total 1900 3.6 1970 3.7

Tasks: 1 LPPT 360 14.7 270 21.0
Threads: 24 MetRead 620 1.0 650 1.0

MetProcess 610 1.0 670 1.0
Total 1730 3.1 1740 4.2

Table 4: Standard greenhouse gas benchmark run on ARCHER for SVN 68 and SVN 413
versions. Times in seconds are reported for the given sections of the code, along with a speed up
S1 computed relative to the corresponding section run in serial. Overall performance is limited
by serialisation of the meteorological data read and process steps.

Two additional benchmarks are therefore considered which increase the number of particles by
a factor of 100, and by a factor of 1000 compared with the standard benchmark. The two new
benchmarks will be referred to as Gx100 and Gx1000, respectively. These benchmarks signifi-
cantly increase the computational demand on the system with a number of consequences: 1. the
serialisation of meteorological processing is “hidden” to a large degree; and 2. the distributed
memory becomes more important for both time-to-solution, and total memory capacity. The
benchmarks are implemented by increasing the source rate to 200,000 per hour, and 2 million
per hour, respectively. All other simulation parameters are unchanged.

The two enhanced benchmarks are run using the Cray compiler environment (in contrast to the
other reported results). The figures are shown in Table 5. All the benchmarks use entire nodes
running 24 threads (one thread per core). Benchmark Gx100 is run on up to 4 MPI tasks, that
is, 4 nodes (total 96 cores). Here, the overall proportional of the particle computation is higher
and scaling is reasonable to 4 MPI tasks. At this point the serial overhead of the meteorological
data (again around 1200 seconds) is large enough to start to degrade scaling. Higher numbers
of MPI tasks were not attempted.

Benchmark Gx1000 requires at least 4 nodes to provide enough memory to run. Results are
therefore reported for 4, 8, 16 and 32 MPI tasks (up to 768 cores with 24 threads per node).
Again, the parallel scaling is reasonable. Ultimately limiting here are, in addition to the mete-
orological data (about 1200 seconds), the serial release episode (about 900–1000 seconds) and
an increase communication overhead in the output section.

3.5 Conclusions

3.5.1 Advice to users

There are a number of choices associated with the MPI version that can be made.
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Execution Section BENCHMARK Gx100 BENCHMARK Gx1000
Model Time (s) Speed up S1 Time (s) Speed up S4

Tasks: 1 LPPT 31400 1.0 – –
Threads: 24 CPRS 1600 1.0 – –

Total 34600 1.0 – –
Tasks: 2 LPPT 15400 2.0 – –
Threads: 24 CPRS 770 2.1 – –

Total 18000 1.9 – –
Tasks: 4 LPPT 7700 4.1 75600 1.0
Threads: 24 CPRS 400 4.0 3890 1.0

Total 9770 3.5 84400 1.0
Tasks: 8 LPPT 3380 8.1 38300 2.0
Threads: 24 CPRS 210 7.6 1980 2.0

Total 5910 5.9 46400 1.9
Tasks: 16 LPPT – – 19500 3.9
Threads: 24 CPRS – – 1070 3.6

Total – – 24000 3.7
Tasks: 32 LPPT – – 9900 7.6
Threads: 24 CPRS – – 520 7.5

Total – – 13600 6.2

Table 5: Enhanced greenhouse gas benchmarks Gx100 and Gx1000 with 4.8 million and 48
million particles, respectively. These results are run on ARCHER using the Cray compiler
environment. Times for different sections of the code are given in seconds. Speed up S1 is
relative to the corresponding result with 1 MPI task for Gx100. For Gx1000, which requires at
least 4 nodes for memory purposes, speed up S4 relative to 4 nodes is presented.

1. The balance of threads and MPI tasks.
Current advice must be to run with no more than one MPI task per shared memory node,
and use one thread per core. For chemistry (alone) there may be scope to use more than
one thread per core if supported in hardware.

2. Peano-Hilbert patches
The number of patches is controlled by nlevel. For most purposes, a value of 4 (giving
44 = 1024 patches globally) should be a good starting point. The number of MPI tasks
should not exceed the number of patches (and should probably be much smaller than the
number of patches).

3. MPI/IO.
The choice useMPIIO = .false. should be used in all situations. Experimental use
of MPI-IO for output is possible, but may cause degradation of performance (owing to
synchronisation of file writes) if used when running with two or more MPI tasks.

4. Extras/Puffs
In contrast to the previous version, specifying a number of full particle extras as zero in
the input file will not result in a crash. The same if true of puffs.
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3.5.2 Known Issues

There are a number of outstanding issues observed with the new version.

1. On some hardware platforms, MPI/IO using MPI shared files may not work at all (it
requires specific flags to be set in the file system). Advice to users is to not to use MPI/IO.

2. Platforms using Intel MPI. It has been observed that the communication required for
chemistry will deadlock when using more than two MPI tasks. We speculate that this is
a problem in Intel MPI. Advice to users is to use a different MPI implementation (where
the problem is not observed).

3. Considerable variability has been observed in the time taken in the process outputs stage.
The root cause of this variability is not understood and requires further investigation.
Advice to users is to limit output request where possible.

3.5.3 Summary

The report describes a new MPI implementation in the NAME code. Performance is charac-
terised for a number of different benchmarks and some residual performance issues identified.
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A Appendix

A.1 ARCHER Environment

We have compilation via Intel 17 and profiles via Allinea MAP 7.0. The relevant module
environment was:

1) modules/3.2.10.2
2) eswrap/1.3.3-1.020200.1278.0
3) switch/1.0-1.0502.60522.1.61.ari
4) craype-network-aries
5) intel/17.0.0.098
6) craype/2.4.2
7) pbs/12.2.401.141761
8) craype-ivybridge
9) cray-mpich/7.2.6
10) packages-archer
11) bolt/0.6
12) nano/2.2.6
13) leave_time/1.0.0
14) quickstart/1.0
15) ack/2.14
16) xalt/0.6.0
17) epcc-tools/6.0
18) allinea/7.0
19) cray-libsci/13.2.0
20) udreg/2.3.2-1.0502.10518.2.17.ari
21) ugni/6.0-1.0502.10863.8.29.ari
22) pmi/5.0.7-1.0000.10678.155.25.ari
23) dmapp/7.0.1-1.0502.11080.8.76.ari
24) gni-headers/4.0-1.0502.10859.7.8.ari
25) xpmem/0.1-2.0502.64982.5.3.ari
26) dvs/2.5_0.9.0-1.0502.2188.1.116.ari
27) alps/5.2.4-2.0502.9774.31.11.ari
28) rca/1.0.0-2.0502.60530.1.62.ari
29) atp/1.8.3
30) PrgEnv-intel/5.2.82

Compilation at SVN 68 is with options
ftn -Wp,-macro=no -O3 -w -extend_source -nbs -auto -no-vec \

-DIntelLinCompiler -sox -fp-model precise -DUseConvert \
-openmp -DUSE_TIMERS

In the course of the work it was recognised that -DUSE_C_FORMAT was essential to avoid
synchronising Fortran internal writes, and was used for all later version results.

Execution is via an aprun command of the form
export OMP_STACKSIZE=8M
export OMP_NUM_THREADS=12
aprun -n 1 -N 1 -d ${OMP_NUM_THREADS} -cc numa_node ${NAME_EXE} ...

Option -cc none was used for jobs requiring more than 12 threads.

The relevant number of threads was also specified in the NAME input file via e.g.,
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OpenMP Options:
Use OpenMP?, Threads, Particle Update Threads
Yes, 24 , 24

Use of Cray compiler environment:

A.2 Cirrus Environment

We have compilation via Intel 17 and profiles via Intel VTUNE. THE SGI message passing
toolkit was used (required for omplace). The relevant module environment was:

1) mpt/2.14 4) intel-compilers-17/17.0.2.174
2) intel-cc-17/17.0.2.174 5) intel-vtune-17/2017.2.0.499904
3) intel-fc-17/17.0.2.174

Compilation options are as for Intel discussed above. Execution is via

export OMP_STACKSIZE=8M
export OMP_NUM_THREADS=18
omplace -nt ${OMP_NUM_THREADS} ${NAME_EXE} ...

If Intel MPI is relevant, the module environment is

1) intel-mpi-17/17.0.2.174 3) intel-fc-17/17.0.2.174
2) intel-cc-17/17.0.2.174 4) intel-compilers-17/17.0.2.174

and execution is via, e.g.,

export OMP_STACKSIZE=8M
export OMP_NUM_THREADS=36

mpirun -np 2 -ppn 1 ./${NAME_EXE} ...
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