
,

Developing Dynamic Load Balancing library for wsiFoam

Xiaohu Guoa, Scott Brownb, Deborah Greavesb

a Hartree Centre,
Science and Technology Facilities Council,

Daresbury Laboratory, Warrington WA4 4AD UK
b School of Engineering,

University of Plymouth, Plymouth, PL4 8AA, UK

Abstract

Offshore and coastal engineering fields are using increasingly larger and more complex numerical simulations to
model wave-structure interaction (WSI) problems, in order to improve understanding of safety and cost implications.
Therefore, an efficient multi-region WSI toolbox, wsiFoam, is being developed within an open-source community-
serving numerical wave tank facility based on the computational fluid dynamics (CFD) code OpenFOAM R©, as part of
the Collaborative Computational Project in Wave Structure Interaction (CCP-WSI). However, even using the efficiency
of a multi-region approach, the computational expense of CFD is high, and hence there is a constant need to improve
the efficiency of these high-fidelity codes. One way that this can be achieved is through the parallelisation of code
to make use of high performance computing facilities. Although OpenFOAM R© is parallel ready, historically the
MPI performance has been considered sub-optimal, but recent developments have led to a number of performance
improvements being implemented in OpenFOAM R© v5.x along with new parallel I/O functionality. The developments
have led to a significant performance benefit when employing a large number of processors, and it is vital that existing
code is updated to be compatible with OpenFOAM R© v5.x in order to utilise this functionality. However, OpenFOAM R©

v5.x still only offers static domain decomposition, which limits the choice of parallel load balancing methods to
algorithms which can only take basic user defined arguments to aid in load balancing. These methods typically use
blocking MPI communications that only consider the number of mesh cells and their spatial distribution (i.e. they
assume homogeneity of load per mesh cell). As typical WSI simulations are often inhomogeneous with respect to the
mesh, due to properties such as mesh motion and wave ‘relaxation’, these decomposition methods based purely on
mesh resolution are likely to be sub-optimal in terms of computing resource usage.

Therefore, in this work the wsiFoam toolbox is updated to utilise the new parallel I/O functionality in OpenFOAM R©

v5.x. Furthermore, it is coupled with a newly implemented dynamic load balancing method, based on a new ParMETIS
decomposition class, that considers all of the relevant parameters is required for efficient simulation and optimal par-
allel performance of WSI problems. Benchmarking of the new functionality shows that the load imbalance is a major
performance bottleneck for dynamic mesh applications but substantial improvements in computational efficiency (up
to 5 times speed up) and parallel scaling have been observed through use of the new library for WSI applications.

Keywords: Wave Structure Interaction; Dynamic Load Balancing; parMETIS; OpenFOAM R©; MPI;

1 Introduction

The interaction of waves and structures is a vital consideration in the design of offshore and coastal structures,
since it has implications on both the safety and cost-effectiveness of a concept. The need to improve understanding
in wave-structure interaction (WSI) has led to increasingly large and complex numerical simulations being used in
offshore and coastal engineering fields, such as the offshore renewable energy (ORE) sector which is considered to be
of high national importance for the UK. The physics and scale of a particular problem are usually case-specific, and
will lead to an unfeasible computational cost if a high fidelity model is used throughout a large domain. Therefore, a

wsiFoam eCSE Report (eCSE12-8) December 14, 2018

multi-region numerical tool for assessing the influence of wave-structure interaction, wsiFoam [1], is being developed
within an open-source community-serving numerical wave tank facility based on the computational fluid dynamics
(CFD) code OpenFOAM R©, as part of the Collaborative Computational Project in Wave-Structure Interaction (CCP-
WSI). The multi-region approach aims to reduce computational cost by splitting a numerical domain into multiple
regions, each of which solves a different set of equations, isolating the high-fidelity component purely to regions
where it is a required approach (e.g. only using compressible solvers when aeration occurs). However, even with the
multi-region approach, CFD is a highly computationally expensive model, and efforts are constantly being made to
improve the efficiency.

One way to reduce the computational cost is parallelisation of code to utilise high performance computing re-
sources which are becoming increasingly readily available. OpenFOAM R© features a very object oriented design with
distributed memory parallelism in mind, and all calls to the message passing interface (MPI) are encapsulated in a
high level library called Pstream. Historically, OpenFOAM R© MPI performance has been considered sub-optimal, but
following a review by the Japanese Research Organisation for Information Science and Technology (RIST) [2] [3], a
collection of enhancements were implemented based on tests using the pimpleDyMFoam solver. These improvements
include dropping the master-slave model to exchange/receive buffer size information; changing the gather/scatter
order; and reducing memory footprint for communication schedules. The resulting recommendations lead to a signifi-
cant performance benefit when employing a large number of processors. OpenFOAM R© v5.x has already incorporated
these performance improvements, and with newly implemented parallel input/output (I/O), wsiFoam is now urgently
required to be ported to use v5.x. Furthermore, OpenFOAM R© currently employs static domain decomposition, which
has a limited choice of parallel load balancing methods (simple, hierarchical, scotch, manual). These methods can
only take basic user defined arguments to aid in load balancing and typically use blocking MPI communications that
only consider the number of mesh cells and their spatial distribution (i.e. they assume homogeneity of load per mesh
cell). As typical WSI simulations require additional CPU effort in terms of mesh motion, wave ‘relaxation’ and turbu-
lence modelling, for example, which are in general inhomogeneous with respect to the mesh, decomposition methods
based purely on mesh resolution are likely to be sub-optimal in terms of computing resource usage. Furthermore,
for zonal CFD applications even the fundamental equations and solution methods are region specific. Therefore, a
dynamic load balancing method that considers all of the relevant parameters is required for efficient simulation and
optimal parallel performance of WSI problems.

Therefore, this report presents work conducted on the implementation of a dynamic load balancing library for
wsiFoam, which automatically balances multiple criterion simultaneously, and is capable of working with multi-
phase and multi-physics simulations. To achieve this objective, wsiFoam will be updated to be compatible with
OpenFOAM R© v5.x allowing it to utilise the latest procedures and newly available IO functionality. Secondly, the
current domain decomposition method will be modified to include the functionality of ParMETIS, an extension of the
decomposition method METIS, which includes routines that are especially suited for parallel adaptive mesh refinement
(AMR) computations and large scale numerical simulations. The algorithms implemented in ParMETIS are based on
the parallel multilevel k-way graph-partitioning, adaptive repartitioning, and parallel multi-constrained partitioning
schemes which have much smaller computing costs compared with METIS. Finally, the new dynamic load balancing
library will be developed based on existing classes in the OpenFOAM R© distribution (dynamicFvMesh) which will
automatically balance the computing load on each MPI task.

The report is structured such that details of the porting of wsiFoam are presented in Section 2; modification of
the domain decomposition library to include ParMETIS functionality in Section 3; development of the dynamic load
balancing library in Section 4; performance bench-marking in Section 5; and the conclusions are drawn in Section 6.

2 WP1: Porting wsiFoam to OpenFOAM R© v5.x

The focus of this work package was wsiFoam, a module developed within the OpenFOAM R© environment for
simulating WSI problems [1]. The wsiFoam solver is based on a multi-region approach, which allows higher fidelity
codes to be applied solely in regions where they are necessary in order to increase computational efficiency. For
example, if we consider the interaction of a wave with a fixed structure, the majority of the domain can be resolved
using an incompressible solver, but in the near vicinity of the structure air may be entrained, and this could only be
captured accurately using a compressible model. Presently, the wsiFoam solver considered here only considers two

2

types of region (incompressible or compressible), but due to the modularity of the code it will be developed to include
cheaper models, such as fully non-linear potential approaches, to further improve efficiency in the future.

In this work package, wsiFoam has been updated to run in OpenFOAM R© v5.x [4], which was the latest released
version at the start of the project. The wsiFoam package was originally developed [1] in Foundation version v2.3.1
[5], and comprised of a multi-region solver largely formed from the existing two-phase solvers interDyMFoam (for
incompressible regions) and compressibleInterDyMFoam (for compressible regions); libraries describing the cou-
pled boundary conditions used at shared boundaries between regions; and additional libraries for turbulence modelling
and six degree of freedom (6DoF) rigid body motion.

The solver and boundary condition libraries were updated to use the new syntax and procedures available in
OpenFOAM R© v5.x. However, the turbulence model libraries were removed, and instead the wsiFoam code was cou-
pled with the existing libraries for this functionality in the OpenFOAM R© v5.x distribution. As well as utilising the
additional functionality and range of options available in the latest OpenFOAM R© distribution, this has the added
advantage that the code should be simpler to update in the future as new versions are released. Similarly, the 6DoF li-
brary was changed to utilise CCP-WSI’s modified library (including additional functionality and development) which
is available and regularly updated in the CCP-WSI repository. Additionally, the existing wave generation and ab-
sorption methods that were available in the original 2.3.1 version of wsiFoam have been replaced through coupling
with the additional toolbox waves2Foam [6]. This toolbox adds a much wider range of expression-based wave the-
ories to choose from, including the option to generate focused waves using superposition of linear components and
has previously been successfully applied in a range of WSI problems such as wave impacts with fixed structures
[7, 8]; wave energy convertors [9, 10]; floating tidal platforms [11]; and waves breaking on a beach [12]. Further-
more, waves2Foam provides the relaxation zone functionality which absorbs waves (and improves the inlet signal) by
blending analytical and simulated values using a user-specified weighting function [6].

2.1 Verification

a) Time: 0.00 s b) Time: 0.05 s

c) Time: 0.10 s d) Time: 0.15 s

e) Time: 0.20 s f) Time: 0.25 s

Figure 1: Snapshots of a simulated dam break crossing a shared boundary (red line) between an incompressible and compressible region using the
finer mesh discretisation.

To test the newly ported version of wsiFoam, a simple quasi 2D test case is used to verify that the free surface
progresses smoothly across the shared boundary between regions. The test case that will be considered in this report
is a dam break simulation previously used as verification by Martínez Ferrer et al. (2016) when developing the

3

original version of wsiFoam [1]. As well as being a popular benchmarks for numerical models [13, 14, 1] this case
will verify that both the compressible and incompressible regions have been implemented correctly. The domain is
designed in the x− z plane with dimensions 0.5 m × 0.15 m, uniformly discretised with an aspect ratio of 1. Two mesh
discretisations have been considered: a relatively coarse mesh (∆x = 2.5 mm) as was used by Martínez Ferrer et al.
(2016) [1]; and a finer mesh (∆x = 0.25 mm) to verify that the methodology is robust on fine mesh discretisations.
The domain is split into two regions with a shared coupled boundary at x = 0.125 m: the left side is modelled as an
incompressible two-phase fluid; the right side is modelled as a compressible two-phase fluid. The side and bottom
boundaries are considered as walls with no slip conditions applied, and the top boundary is an open atmosphere
boundary where the pressure is 1 bar. The water phase is initialised as a block of width a = 0.06 m and height
h = 0.12 m in the incompressible region and is released at time t = 0 s (see Figure 1a).

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

9

a)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

b)

Martin and Moyce (1952)

Present (x = 2.5mm)

Present (x = 0.25mm)

Martínez Ferrer et al. (2016)

Figure 2: Normalised horizontal position of the dam break front (a) and height at the left wall (b) as a function of normalised time. The dotted
black line indicates the shared boundary between regions.

Figure 1 presents snapshots of the simulated water phase at times t = 0.00 s (a), t = 0.05 s (b), t = 0.10 s (c),
t = 0.15 s (d), t = 0.20 s (e), t = 0.25 s (f). The shared boundary between the incompressible and compressible
regions are indicated by the red vertical line in each plot. The snapshots indicate that, qualitatively, the free surface
passes smoothly between regions, and in additional analysis it was confirmed that both the velocity and pressure
field also have a smooth distribution across the shared boundary. Furthermore, Figure 2 shows quantitative analysis
of the position of the water front along the bottom of the tank, f , (a) and the height of the water column along the
left boundary of the tank, h (b). The solution from both of the present grids are compared with Martínez Ferrer et
al.’s original wsiFoam solution [1] along with experimental data [15]. The results imply that the wsiFoam code has
been successfully ported to the latest version since the coarser grid produces almost identical solutions as Martínez
Ferrer et al. for both f and h. However it should be noted that there is a slight discrepancy in the water front
position (Fig 2a) in the compressible region which is likely due to updated procedures implemented since the release
of OpenFOAM R© v2.3.1. The fine mesh produces a solution for the water front that is also smooth over the shared
boundary between regions, indicating a robust coupling scheme. Overall, based on the information in Figures 1 and
2 the code is considered to have been implemented correctly: further tests were also conducted successfully to verify
that the coupling with waves2Foam was working as expected, and that waves propagated through the shared boundary.

3 WP2: New domain decomposition class parmetisDecomp implementation with ParMETIS

In this work package, OpenFOAM R©’s domain decomposition methodology is updated to include the functionality
of the MPI-based parallel library ParMETIS. OpenFOAM R© v5.x presently only offers static domain decomposition
techniques, and this consequently limits the choice of parallel load balancing methods to algorithms which take basic
user defined arguments to aid in load balancing (simple, hierarchical, scotch, METIS, manual)(see Fig 3).
Furthermore, these methods typically use blocking MPI communications that only consider the number of mesh
cells and their spatial distribution (i.e. they assume homogeneity of load per mesh cell). For WSI applications, a
decomposition method based purely on the number of mesh resolution is considered to be sub-optimal in terms of

4

computing resource usage since there are multiple sources of CPU effort which are generally inhomogeneous such
as mesh motion, wave ‘relaxation’ and turbulence modelling. Furthermore, the design of wsiFoam means that even
the fundamental equations and solution methods are region specific. Therefore, a dynamic load balancing method
that considers all of the relevant parameters is required for efficient simulation and optimal parallel performance of a
typical WSI problem.

Based on the above discussion, the present domain decomposition method has been modified to include ParMETIS,
which extends the functionality provided by METIS and includes routines that are especially well suited for parallel
AMR computations and large scale numerical simulations. The algorithms implemented in ParMETIS are based on
the parallel multilevel k-way graph-partitioning, adaptive repartitioning, and parallel multi-constrained partitioning
schemes which have much smaller computing costs compared with METIS.

Figure 3: Implementation of the derived parmetisDecomp decomposition class relative to existing code.

In OpenFOAM R©, the domain decomposition class is structured in an object orientated design, providing flexibility
to introduce new methodologies/algorithms without needing to rewrite existing fundamental code. This is achieved
using a runtime selection mechanism known as the "virtual constructor" in C++ which provides the ability to clone
an object without knowing the object type. Though C++ does not support this as standard, this greatly simplifies
the addition of derived classes, particularly a solver with generic boundary conditions. Presently, a selection of de-
rived classes (e.g. METIS or Scotch) are available in OpenFOAM R©, which contain their own routines/algorithms
for domain decomposition, and these inherit generic member functions from the base class decompositionMethod.
Therefore, the solver code is written using these generic member functions, and the details of the routines/algorithms
can be inter-changed depending on the preference of the user by selecting the relevant derived class (Figure 3) at
runtime. In this work, a new derived class, parmetisDecomp, has been created which uses the ParMETIS routines/al-
gorithms. Since PARMETIS is restricted such that all of its routines must be called by at least two MPI partitions, the
parmetisDecomp class verifies the number of MPI partitions being used, and if there is only one then the partition
method is automatically switched to use METIS.

4 WP3: Developing dynamic load balancing mechanism for OpenFOAM R©

In OpenFOAM R©, mesh motion and topology changes are handled by the dynamicFvMesh base class, and the user
can select the relevant dynamic mesh derived class through the dynamicMeshDict located in the constant directory.

5

Therefore, it is natural to use dynamicFvMesh as the base class for the implemention of a dynamic load balancing
mechanism in OpenFOAM R© (Figure 4).

Figure 4: Dynamic Load Balancing Class Implementation based on dynamicFvMesh

In this work package, load imbalance issues caused by mesh refinement/unrefinement, which uses the derived
class dynamicRefineFvMesh, are addressed. There are two stages for the coupled dynamic load balancing and
mesh refinement process. The first stage is the mesh refinement: once the mesh topology is changed due to mesh
refinement/unrefinement, the general mesh.update function defined by the dynamicRefineFvMesh class is called.
The second stage is the dynamic load balancing process: once the mesh has been updated, the algorithm described in
Algorithm 1 is used to determine if dynamic load balancing is required and update mesh decomposition if necessary.
The maximum imbalance value, maxImb, defined as

maxImb = max
(

locNumCells − IdealLocNumCells
IdealLocNumCells

× 100%
)
, (1)

where locNumCells and IdealLocNumCells represent the number of cells in each partition and ideal number of
cells in each partition, respectively, is used as a requirement indicator for load balancing based on an acceptable
imbalance tolerance imbTol, generally set as 10.00%. Once the maximum imbalance exceeds the imbalance tolerance
(MaxImb > imbTol), the coarse level 0 dual graph will be created and used for redecomposition. Each graph node
represents a cell of the coarse level 0 mesh, and has been assigned a weight based on the weighting function:

nodeWeight = nodeWeight + numLeaves. (2)

The ParMETIS decomposition class is then used to decompose the coarse level 0 mesh based on the assigned weight
of each node. Consequently, the resulting partition will have roughly equal weights, normalising the load between
processors to reduce imbalance.

Algorithm 1: Dynamic Load Balance Algorithm for DynamicRefineFvMesh
Step 1: Update refinement fields within each MPI partition.
Step 2: Check present level of imbalance with equation (1)
if maxImb > imbTol then

construct the level 0 graph nodes
calculate each nodes weight with equation (2)
call repartition with ParMETIS
redistribute the mesh and variable fields
correct boundary conditions for all fields

end if

6

5 WP4: Results and Performance Analysis

5.1 Test case

The dynamic load balancing library is verified using an existing test case in the OpenFOAM R© distribution for the
interDyMFoam solver modified to use the wsiFoam with a single incompressible region. The simulation is a 3D dam
break within a box-shaped domain (1 × 1 × 1 m), with an obstacle (a cuboid with dimensions 0.25 × 0.25 × 0.25 m) at
the centre of the domain. The top of the domain is considered to be an atmospheric boundary condition (p = 1 bar),
and the remaining sides and the obstacle are considered as solid walls with no-slip conditions applied. The initial dam
break is a block of water (0.6 × 0.1875 × 0.75 m) located in one corner of the domain (see Figure 5a), that is released
at time t = 0. The initial mesh is uniformly discretised with an aspect ratio of 1 (cubic cells), and automatic mesh
refinement is applied based on the values of two fields: the free surface (refined up to octree level 2); and the non-
hydrostatic pressure (refinement up to octree level 3). This ensured that the mesh is only refined when it is required,
both temporally and spatially, and consequently the total number of cells is constantly changing.

This test case is particularly useful for verification the new dynamic load balancing library for two primary reasons:
firstly, the load can be balanced using the total number of cells as an indicator for the need to redistribute load; and
secondly, in OpenFOAM R© parallel simulations, the domain is typically decomposed at time t = 0 and attempts to
balance the total number of cells for each processor. Without dynamic load balancing this decomposition is not
updated at runtime, potentially leading to a substantial imbalance in CPU effort if, for instance, most of the automatic
mesh refinement happened to occurs in a single CPU domain the consequence would be that the remaining processors
would waste a lot of time waiting. Figure 5 shows snapshots of the volume of fluid isosurface (α1 = 0.5) for the dam
break with obstacle case run on eight processors with dynamic load balancing enabled at t = 0 s (a), t = 0.02 s (b),
t = 0.12 s (c), t = 0.26 s (d), t = 0.36 s (e), t = 1.1 s (f). The coloured regions indicate the processor that is solving
each part of the domain, and the grey lines show the mesh discretisation at each time. Comparing the snapshots it is
clear that the processors are constantly being reallocated based on the number of cells in each region. If we consider
the snapshots at times t = 0.0 s and t = 0.02 s (Figures 5a and b), it seems that the mesh has been rapidly refined
around the free surface between the two frames, and this has led to more processors being allocated to this section of
the domain (at t = 0 s only 4 processors can be seen, whereas all 8 are visible at t = 0.02 s). Based on these snapshots,
it is concluded that the dynamic load balancing library has been implemented correctly into OpenFOAM R© v5.x, and
that it works well when number of cells is used as the indicator function, i.e. cases where automatic mesh refinement
is used.

5.2 Performance analysis

Benchmark tests are performed with wsiFoam for two initial mesh resolutions, ∆x = 7.8 mm and ∆x = 3.9 mm,
leading to an approximate simulation size of 2 and 17 million cells, respectively. Each case has been run for varying
numbers of nodes (each with 24 cores/MPI partitions) on the ARCHER HPC facility, up to a total of 64 nodes (1536
cores/MPI partitions). Figure 6 shows the wall time measurement for the test case dam break with and without using
dynamic load balancing for the 2M cell case on 24 cores (a) and the 17M cell case on 768 cores (b). The results
show that using dynamic load balancing leads around 4 times speed up for 2M case and 5 times speedup for 17M case
compared to when it is not used.

Figures 7a and 7b show the maximum imbalance (equation 4) and cost of the required mesh.update function
when using dynamic load balancing for the 17M cell case. The maximum imbalance (Figure 7a) is very high at the
beginning of the simulation and then is kept at an acceptably low imbalance throughout the remaining simulation by
the dynamic load balancing process. Furthermore, when there is a high maximum imbalance, the cost of the mesh
update function (Figures 7b) is also very expensive. As the number of MPI partitions/cores increases, the dynamic
load balancing is required more frequently but the cost of the mesh.update function decreases. This is thought to be
due to communication volume decreasing as the number of MPI partitions increases.

Figure 8 shows that wsiFoam scales strongly when using dynamic load balancing library with 17M mesh cells.
Compared to the 16 nodes (384 cores) simulation, the efficiency of 32 nodes (768 cores) and 64 node simulations are
about 80.9% and 53.1%, respectively.

7

a) b) c)

d) e) f)

Figure 5: Snapshots of the volume of fluid isosurface (α1 = 0.5) from the dam break with obstacle case using eight processors, adaptive mesh and
dynamic load balancing. The colours represent the sections being solved by each processor, and the grey lines show the mesh discretisation.

6 Conclusions and Identification of Future Work

The whole wsiFoam software framework has been successfully ported to OpenFOAM R© v5.x and has been verified
using relevant multi-region benchmarks for incompressible and compressible flow. The initial benchmark has showed
the advantage of using collated parallel I/O format which has substantially reduced the number of files when using
large number of MPI partitions. However, it must be used together with thread-enabled MPI in order to get the
performance advantage.

A new dynamic load balancing library has been developed using the number of mesh cells per MPI partition as
the weight function to balance the load. This approach lends itself to simulations where the number of mesh cells is
constantly changing, and is therefore highly suited to adaptive mesh refinement cases, which deploy refinement/unre-
finement techniques. A test case using this adpative mesh functionality was used to benchmark the new library and
shows a substantial increase in both the wall time (4-5 times speed up) and the scalibility (greater than one thousand
cores with more than 50% efficiency) of the wsiFoam solver. However, restricting use of the dynamic load balancing
library to cases with adaptive mesh refinement is non-generic and rules out a large number of current WSI problems.
Typically, WSI simulations of floating objects in OpenFOAM R© use mesh deformation to track the motion of the struc-
ture [9, 10, 16]. Since, as standard, OpenFOAM R© is only capable of utilising one form of dynamic mesh at a time,
these cases are incompatible with adaptive mesh refinement, although recently progress has been made in this area
[17]. To utilise dynamic load balancing in generic WSI simulations it is imperative that the weighting function is
developed to work with cases with fixed numbers of mesh cells in the future, based on a timing-based technique.

Furthermore, there are additional limitations which must be addressed in the future in order to make dynamic load
balancing a robust and practical tool. Presently there are issues when mesh unrefinement is required along with the
dynamic load balancing library. Further performance improvement can also be achieved by removing unnecessary
I/O (reading dictionaries from files) particularly related to the refinementHistory class implementation. Once
the generic functionality and these issues are addressed, the dynamic load balancing approach should be thoroughly
benchmarked against existing numerical simulations, such as those proposed as part of the CCP-WSI Blind Test Series
[18].

8

2M 17M
Mesh Cells

0

2000

4000

6000

8000

10000

12000

14000

16000

CP
U

Ti
m

e

Dambreak without DLB
Dambreak with DLB

Figure 6: Performance Comparision between Dynamic load balancing and without dynamic load balancing for Dam Break with Obstacle test case

Acknowledgement

The authors would also like to acknowledge the funding support under the embedded CSE programme of the
ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). The authors would also like to thank the
EPCC eCSE support team for their help throughout this work

References

[1] P. Martínez Ferrer, D. Causon, L. Qian, C. Mingham, and Z. Ma, “A multi-region coupling scheme for compressible and incompressible
flow solvers for two-phase flow in a numerical wave tank.” Computers and Fluids, vol. 125, pp. 116–129, 2016. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S004579301500376X

[2] Openfoam parallel improvement. [Online]. Available: http://www.openfoam.com/releases/openfoam-v1606+/parallel.php#
parallel-improvements

[3] Openfoam 4.x release. [Online]. Available: https://openfoam.org/release/4-0/

[4] H. Weller, C. Greenshields, W. Bainbridge, M. Janssens, and B. Santos, “OpenFOAM 5.0,” 2017. [Online]. Available:
https://openfoam.org/release/5-0/

[5] H. Weller, C. Greenshields, M. Janssens, A. Heather, W. Bainbridge, and S. Ferraris, “OpenFOAM 2.3.1,” 2014. [Online]. Available:
https://openfoam.org/release/2-3-1/

[6] N. G. Jacobsen, D. R. Fuhrman, and J. Fredsøe, “A wave generation toolbox for the open-source CFD library: OpenFOAM R©,” International
Journal for Numerical Methods in Fluids, vol. 70, pp. 1073–1088, 2012. [Online]. Available: https://onlinelibrary.wiley.com/doi/full/10.
1002/fld.2726

[7] Z. Hu, D. Greaves, and A. Raby, “Numerical wave tank study of extreme waves and wave-structure interaction using OpenFOAM R©,” Ocean
Engineering, vol. 126, pp. 329–342, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0029801816303936

[8] S. Brown, P.-H. Musiedlak, E. Ransley, and D. Greaves, “Numerical simulation of focused wave interactions with a fixed FPSO using
OpenFOAM 4.1,” in Proceedings of the 28th International Ocean and Polar Engineering Conference, Sapporo, Japan, 2018, pp. 1–8.
[Online]. Available: https://www.onepetro.org/conference-paper/ISOPE-I-18-012

[9] E. Ransley, D. Greaves, A. Raby, D. Simmonds, M. Jakobsen, and M. Kramer, “RANS-VOF modelling of the wavestar point absorber,”
Renewable Energy, vol. 109, pp. 49–65, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960148117301659?
via%3Dihub

[10] E. Ransley, D. Greaves, A. Raby, D. Simmonds, and M. Hann, “Survivability of wave energy converters using CFD,” Renewable Energy,
vol. 109, pp. 235–247, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0960148117301799?via%3Dihub

[11] E. Ransley, S. Brown, D. Greaves, S. Hindley, P. Weston, E. Guerrini, and R. Starzmann, “Coupled RANS-VOF modelling of floating tidal
stream concepts.” in Proceedings of the 4th Marine Energy Technology Symposium (METS), Washington, D.C., USA, 2016, p. 5.

[12] S. Brown, D. Greaves, V. Magar, and D. Conley, “Evaluation of turbulence closure models under spilling and plunging breakers in the surf
zone,” Coast. Eng., vol. 114, pp. 177–193, 2016. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378383916300400

[13] A. Murrone and H. Guillard, “A five equation reduced model for compressible two phase flow problems,” Journal of Computational Physics,
vol. 202, pp. 664–694, 2005. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0021999104003018

[14] Z. Ma, D. Causon, L. Qian, C. Mingham, H. Gu, and P. Martínez Ferrer, “A compressible multiphase flow model for
violent aerated wave impact problems,” Proceedings of the Royal Society A, vol. 470, p. 25, 2014. [Online]. Available:
http://rspa.royalsocietypublishing.org/content/470/2172/20140542.short

9

https://www.sciencedirect.com/science/article/pii/S004579301500376X
http://www.openfoam.com/releases/openfoam-v1606+/parallel.php#parallel-improvements
http://www.openfoam.com/releases/openfoam-v1606+/parallel.php#parallel-improvements
https://openfoam.org/release/4-0/
https://openfoam.org/release/5-0/
https://openfoam.org/release/2-3-1/
https://onlinelibrary.wiley.com/doi/full/10.1002/fld.2726
https://onlinelibrary.wiley.com/doi/full/10.1002/fld.2726
https://www.sciencedirect.com/science/article/pii/S0029801816303936
https://www.onepetro.org/conference-paper/ISOPE-I-18-012
https://www.sciencedirect.com/science/article/pii/S0960148117301659?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0960148117301659?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0960148117301799?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0378383916300400
https://www.sciencedirect.com/science/article/pii/S0021999104003018
http://rspa.royalsocietypublishing.org/content/470/2172/20140542.short

0 100 200 300 400

Number of Time Steps

0

100

200

300

400

500

M
ax

Im
b

al
an

ce
in

P
er

ce
n

ta
ge

16 nodes

32 nodes

64 nodes

0 100 200 300 400

Number of Time Steps

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

M
es

h
U

p
d

at
e

O
ve

rh
ea

d
[s

]

16 nodes

32 nodes

64 nodes

Figure 7: The maximum imbalance (a) and mesh update cost (b) as a function of time step number. These results were obtained for the 17M cell
‘dam break with obstale’ test case using dynamic load balancing.

384 768 1536
Number of MPI Partitions

2500

3000

3500

4000

4500

5000

W
al

lT
im

e
[s

]

Figure 8: Scaling of the ‘dam break with obstacle’ test case using wsiFoam solver with 17M mesh cells

[15] J. Martin and W. Moyce, “Part IV. An experimental study of the collapse of liquid columns on a rigid horizonal plane.” Proceedings of the
Royal Society A, vol. 244, pp. 312–324, 1952. [Online]. Available: http://rsta.royalsocietypublishing.org/content/244/882/312

[16] C. Windt, J. Ringwood, J. Davidson, E. Ransley, M. Jakobsen, and M. Kramer, “Validation of a CFD-based numerical wave tank of the
Wavestar WEC,” in Advances in Renewable Energies Offshore, G. Soares, Ed. Taylor and Francis Group, 2018, pp. 439–446.

[17] C. Eskilsson and J. Palm, “Simulations of floating wave energy devices using adaptive mesh refinement,” in Advances in Renewable Energies
Offshore, G. Soares, Ed. Taylor and Francis Group, 2018, pp. 431–438.

[18] CCP-WSI Working Group, “CCP-WSI Blind Test Series’,” 2018. [Online]. Available: https://www.ccp-wsi.ac.uk/blind_test_workshops

10

http://rsta.royalsocietypublishing.org/content/244/882/312
https://www.ccp-wsi.ac.uk/blind_test_workshops

	Introduction
	WP1: Porting wsiFoam to OpenFOAM® v5.x
	Verification

	WP2: New domain decomposition class parmetisDecomp implementation with ParMETIS
	WP3: Developing dynamic load balancing mechanism for OpenFOAM®
	WP4: Results and Performance Analysis
	Test case
	Performance analysis

	Conclusions and Identification of Future Work

