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Abstract

We describe the technical work carried out in the eCSE project ‘A fully Lagrangian Dynamical Core
for the Met Office NERC Cloud Model’, whose aim is to incorporate the ‘Moist Parcel in Cell‘ (MPIC)
code into the Met Office NERC Cloud Model (MONC), thereby granting it MPI parallelism and the
ability to scaly beyond a single node. First we describe the modifications to MONC in order for it to
be parcel-aware, then we outline the implementation of MPIC’s physics into MONC. We then provide
an in-depth comparison of MPIC with the newly developed code, and investigate how it scales to many
thousands of MPI processes. Finally we discuss the limitations of the code, and future work to be carried
out to mitigate these limitations. We found that the code can scale up to many thousands of cores for
large problem sizes, although the main limiter of performance at scale are the Fourier Transform routines.
Despite good MPI performance from the code, OpenMP performance is poor, achieving a speedup of
only 3 on 12 threads. Overall, on a single node the new code performs better than MPIC does, carrying
out more parcel operations per core per second. Crucially, the work carried out in this project allows
considerably larger problem sizes to be simulated than was possible with the original implementation of
MPIC.

1 Introduction

This report documents the technical work carried out in the eCSE project entitled ‘A fully Lagrangian
dynamical core for the Met Office NERC Cloud Model’. The aim of this project was to implement the
functionality of the ‘Moist parcel in cell’ code developed by Dritschel et al. (2018) into the ‘Met Office
NERC Cloud Model’ (Brown et al. 2015). In this section we will describe the two aforementioned codes
and the original proposed work. In the following section (Section 2) we will describe the development
work carried out. We then describe scaling tests and comparisons with the original code in Section 3.
Finally, we summarise the outputs from the project and discuss future work in Section 4.

1.1 Moist Parcel in Cell

The ‘Moist Parcel in Cell’ code (hereby MPIC) is a Lagrangian fluid dynamics code which models moist
convection and cloud development. It achieves this by representing the fluid as a large number of ‘moist
parcels’ containing various properties such as buoyancy, vorticity and humidity. Whilst the code is
Lagrangian, a gridded approach is used in order to solve for the parcel velocity and vorticity tendency.
This is achieved by trilinearly interpolating the parcel properties onto grids, solving for the velocity and
vorticity tendency on these grids, then trlinearly interpolating these gridded values back onto the parcels.
The parcel-based approach has many benefits over a purely grid-based approach, such as allowing for
explicit sub-grid representation, a velocity field that is undamped by numerical diffusion down to the
grid scale and it is exactly conservative. The approach also allows for a natural description of mixing,
whereby parcels can split into two and merge together.

MPIC is written in Fortran and is parallelised using OpenMP. This imposes a limitation on both
the scalability of the code (due to it being limited to only a small number of cores), and more crucially
on the number of parcels (and thus indirectly the grid resolution) that can be used due to the memory

1



limitations of a single node. MPIC at present uses dimensionless (normalised) units. MPIC evolves
the parcels via a fourth-order Runge Kutta integrator (RK4). Figure 1 shows a flowchart for the basic
structure of MPIC.

1.2 Met Office NERC Cloud Model

The ‘Met Office NERC Cloud Model’ (hereby MONC) is an Eulerian fluid dynamics code that simulates
cloud microphysics. MONC was designed to supersede the older Met Office Large Eddy Model (LEM),
which did not scale beyond 512 cores. As such it can be regarded as a complete re-write of the LEM.
It was designed to be easy to modify and implement new functionality into. It employs a “plug-in”
architecture whereby it consists of a number of independent ‘components’ which can be selected and
run in a specific order at runtime. Components can be switched on/off to add/remove functionality, or
swapped out with other components to provide - for example - different solvers. This allows for a highly
customisable code that is easy to develop new functionalty for.

MONC is organised into three different parts, the Model Core, the Model State and the Components.
The Model Core consists of the core functionality of MONC, including how it handles components, reading
in configuration files, and functions/subroutines common to all components (e.g. haloswapping). The
Model State contains the data describing the state of the simulation, such as the grids, as well as various
other variables such as the time, timestep and other runtime-specific quantities. The components, which
are called once per timestep in a user-defined order, perform actions on the data contained within the
Model State. MONC is parallelised using MPI, and scales up to 32,768 cores. It is spatially decomposed
in the x and y directions. Unlike MPIC, it uses an Eulerian integrator to evolve its Model State.

MONC also has an I/O server which permits real-time in-situ analysis of the simulation data. This
works by having a number of processes set aside (typically one per node) for analytics and I/O. The
compute processes periodically asynchronously send data to the I/O Servers, which then perform any
necessary reduction operations on the data and write the results to disk. This setup allows the compute
processes to concentrate on carrying out the simulation work, whilst the I/O servers can take on the
burden of analysis and I/O. Figure 1 shows a flowchart for the basic struture of MONC.

1.3 Proposed Technical Work

The proposed work was to incorporate the parcel-based MPIC into MONC, producing a so called ‘Parallel
Moist Parcel in Cell’ (PMPIC) code, which scales beyond one node, permitting larger simulations to be
carried out than are possible with MPIC. Incorporating MPIC into MONC is beneficial as MONC’s
layout makes it easy to implement new functionality into, and much of its functionality can be used
with minimal modifications to permit the MPI parallelisation of MPIC. This also broadens the scope of
MONC as it adds Lagrangian functionality, complimenting its existing Eulerian functionality.

The proposed work was split into four Work Packages:

• WP1: MONC Model Extensions
Modify the Model Core so that it is parcel-aware by implementing parcel-specific functionality.
Additionally modify the Model State to contain parcel data. This work includes interpolation
routines to interpolate to/from grids from/to parcels, haloswapping parcels between processes,
Fourier transforms, operations on spectral variables and functionality to use the RK4 integrator.

• WP2: Dynamical Core implementation
Implement various MONC components to provide the existing MPIC functionality. These com-
ponents include a RK4 integrator, parcel splitting and merging, velocity inversion, and velocity
tendency.

• WP3: Diagnostics
Implement parcel awareness into the I/O Server and some basic parcel data analysis operations.

• WP4: Testing, Validation and Training
Testing and validation of the work carried out in WP1 to WP3. This Work Package will be carried
out in parallel with WPs 1-3 where necessary. Additionally, provide an ARCHER Webinar to
publicise the work carried out in the eCSE and advise potential users in PMPIC’s use.
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Figure 1: Flowcharts showing the structure of MPIC (left) and MONC (right).
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Figure 2: Comparison of the mean time per par2grid and grid2par operation for both array and derived
datatype parcel descriptions.

Throughout the project we aimed to include OpenMP functionality into PMPIC, making it a hybrid
OpenMP/MPI code. In the following sections we will refer to left/right as the -ve/+ve x direction,
down/up as the -ve/+ve y direction, and bottom/top as the -ve/+ve z direction.

2 Technical Work Carried Out

We will now describe the technical work carried out in this project. It broadly falls under four categories:
adding parcel properties into the Model State, implementing parcel functionality into the Model Core,
writing components, and diagnostic routines. In the following subsections we will describe the work
carried out in the four aforementioned categories, and will describe testing and validation applied to the
code.

2.1 Model State

2.1.1 Arrays vs Derived Datatypes

Firstly, it is important to determine how to best represent parcels in PMPIC. There are two main ways
this could be done: an array of a ‘parcel’ derived data type containing all the parcel properties (hereby the
derived datatype approach), or several arrays, one for each parcel property (hereby the array approach).
The derived datatype approach simplifies haloswaping, as one can simply send arrays of the n parcel
datatypes. If in future extra parcel properties are added, other than re-defining the parcel datatype,
little to no work has to be done to change the existing parcel haloswapping routines. On the other hand,
the array approach allows a single parcel property for all the parcels (e.g. buoyancy) to be contiguous in
memory, which may result in performance gains when acting on a single parcel property, although parcel
haloswapping is not so easy to implement.

Performance analysis of MPIC showed that a significant amount of the runtime is spent in the
parcel interpolation routines. We therefore wish to choose a parcel representation that gives the best
performance in these routines. In order to determine the optimal parcel representation we wrote basic
parcel to grid (par2grid) and grid to parcel (grid2par) routines that could handle the array approach
and the derived datatype parcel descriptions, and determined the mean time per operation for each
interpolation. A graph of the times per operation for a gridsize of 1283 using 23 parcels per cell is
displayed in Figure 2. It shows that grid2par takes roughly the same time using either method, but that
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par2grid is significantly faster using the array description. On average the array description is 6% faster
for the par2grid operation, and 70% faster for the grid2par operation. We therefore chose the array
parcel representation method due to its better performance.

2.1.2 MPIC Data Representation

In order to minimise the alterations to existing MONC code, we chose to place all the parcel related data
into a parcels derived datatype inside the model core so that they were separated from the rest of the
data, and also clearly labelled as belonging to parcels. The various grids used by MPIC were chosen to
be the existing prognostic_field_type datatype and were simply added as additional members of this
type into the model state.

In order to facilitate the possibility of adding additional parcel properties in the future, we imple-
mented a two dimensional array of parcel properties in the parcels datatype, indexed by parcel number,
and the index of the property. This array is implemented into the parcel haloswapping routines (Section
2.2.2) so that newly added parcel properties are automatically haloswapped, and no additional work is
needed to implement haloswapping for these new properties.

2.2 Model Core

With a description of the parcel data in the Model State, we could then move onto developing functionality
into the Model Core.

2.2.1 Parcel Interpolation

The parcel interpolation routines form the backbone of MPIC, as they allow parcel properties to be
interpolated onto the grid and vice versa. For par2grid/grid2par, a parcel’s properties are trilinearly
interpolated to/from the eight gridpoints surrounding that parcel. For par2grid, a grid point’s value is
derived from the weighted sum of all the parcels in the eight cells surrounding it, whilst in grid2par a
parcel’s value is determined from the weighted sum of the values of the eight grid points surrounding it.

In MONC, where the domain in spatially decomposed, parcels on the edge of a domain will require to
pass/retrieve values to/from a gridpoint belonging to a neighbouring process. For grid2par we perform
a normal haloswap (adjacent processes’ edge cells to the halo) and we can then interpolate onto parcels.
This is not so simple in par2grid however, as we are moving parcel properties onto grid points via a sum.
A reverse haloswap is required, where we send a process’ halo cells to adjacent processes, who then add
it to the values in their own cells. This differs from regular haloswapping, which send regular cells to
halo cells.

Due to the parallel decomposition of MONC (in the x and y directions), parcels are only influ-
encers/influenced by halo cells in the right and upward edges of the process’ domain. We hence only
need to haloswap the right and upper edges of the grids as halo values in the downward and left edges are
not needed. With this, and the fact that par2grid requires a special kind of haloswapping, we implemented
our own grid haloswapping rather than try to modify MONC’s existing haloswapping functionality. We
produced two haloswapping routines, grid2par_haloswap and par2grid_haloswap for use in grid2par
and par2grid respectively.

In order to validate our par2grid and grid2par routines, we constructed test cases consisting of linear
profiles in x, y and z (or a combination of two or more directions) and ensured that we could recover
the correct parcel/grid values from the interpolations. We chose linear profiles as the trilinear method is
only guaranteed to produce the correct result for linear profiles.

2.2.2 Parcel Haloswapping

As parcels are evolved in time they will move about the computational domain, and we therefore need
to be able to pass these between individual processes’ domains. In order to do this we carry out the
following operations:

1. Loop over all parcels in the process and flag the parcels that need to be transferred to neighbouring
processes.
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Figure 3: Parcels coloured according to their initial process before (left) and after (right) being advected
by a rotational velocity profile, demonstrating that the parcels have been successfully haloswapped between
processes.

2. For each neighbouring process, construct buffer arrays where the parcels that need to be sent to
that process are stored.

3. Send these buffers to each neighbour via a non-blocking send.

4. Receive buffers from each neighbouring process, and unpack the parcels into the parcel arrays,
backfilling into gaps left by sent parcels where applicable.

5. Backfill parcels into any remaining holes left by sent parcels.

In order to test parcel haloswapping, we implemented a basic Eulerian integrator component and a
component to prescribe the parcel velocities, u = f(x, y, z). We tagged parcels according to their starting
position and integrated parcel trajectories for a number of timesteps and ensured that the end solution
was identical regardless of the number of processes used. Velocity profiles tested included a constant
velocity in various directions and a rotational velocity profile. An example of a test is shown in Figure 3,
where a series of parcels split between four processes is advected according to a rotational velocity field.
The parcels are colour-coded by their initial process, and are successfully transferred between processes
as they move around the computational domain.

2.2.3 Implementing functionality for a RK4 integrator

MONC uses an Eulerian integrator, so per timestep each component is called once, and the model state
is evolved at the end. In MPIC, which uses a RK4 integrator, several components would need to be
called four times in sequence, corresponding to each of the four steps in the RK4 integration. We thus
had to modify the Model Core so that it knew to call a group of components a fixed number of times
per timestep.

2.2.4 Fast Fourier Transforms and Spectral Derivatives

A number of MPIC’s solvers use Fast Fourier Transforms (hereby FFTs) when calculating quantities. An
existing MONC component also uses FFTs for a calculation, so we used the pre-existing FFT functionality
from this component, but built it into the model core. MONC’s FFT routines perform FFTs in the x and
y directions using the FFTW library, leaving the z direction in positional space. The grids are therefore
transformed into semi-spectral space. MONC stores the complex output in double precision (real) arrays,
where odd-numbered indices are the real part, and even-numbered indices are the imaginary part. As a
real to complex FFT of N points produces N/2 + 1 complex numbers, the resultant (global) transformed
grids contain Nx + 2, Ny + 2 and Nz cells in the x, y and z directions respectively. This means that for
certain grid decompositions, a complex number (pair of reals in the array representation) can be split
between two processes.
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MPIC’s solvers use spectral derivatives, that is, differentiation is carried out on a spectral variable.
Mathematically, to do this we compute:

F ′(k) = 2πikF (k), (1)

where F (k) is the Fourier transformed quantity, F ′(k) is the derivative of the quantity and k is the
wavenumber. To compute the second derivative we simply have

F ′′(k) = −4π2k2F (k). (2)

In order to implement the first derivative we simply need to multiply each entry in the array by 2πk
and swap the real and imaginary parts in each pair around to represent multiplying by i. As these pairs
can be split between processes we need to send messages to swap these values. As the second derivative
requires no swapping, this is simple to implement as all we do is multiply each entry in the array by
4π2k.

In order to verify the FFT routines we got them to compute FFTs functions with known Fourier
transforms, and compare the values. Similarly, we tested the spectral derivatives by taking the FFT of
a known function, differentiating it, then taking the inverse FFT and ensuring it matched the analytical
derivatives.

We note here that MPIC differs from MONC in that it takes FFTs in the x, y and z. We however
adopt the MONC approach in PMPIC and use a tridiagonal solver in the z direction rather than a FFT
solver. Please see Section 2.3.4 for more details on the solver.

2.2.5 Timing routines

In order to better quantify the performance of PMPIC, it was decided to implement timing functionality
into the code. In order to do this we added a timing subroutine into the model core which components
could register with, and report when they were entered and exited. This timing component could then
report timing statistics at the end of the run so the user (and developer!) can get an indication of which
parts of the code are the most time consuming.

2.3 Components

With the Model Core fully parcel-aware, and general functionality required MPIC in place, components
could then be implemented.

2.3.1 Parcel/Grid Setup

We first wrote some basic components that read in a config file and allocated memory for the parcels
and grids. These used much of the existing MONC Model Core functionality for determining the parallel
decomposition and grid properties. It was also important to produce a component that set up the parcels
according to the initial condition. It was decided that this component would be user-supplied, and would
set up the parcels as needed for the simulation. For the eCSE project we wrote a component that
produces the initial condition for the spherical thermal described in Dritschel et al. (2018).

2.3.2 Basic I/O Routines

Before work on WP3 where more sophisticated I/O would be developed, we wrote two basic I/O compo-
nents. The first component was a parcel and grid writing routine, which would produce binary files for
the grid and parcels, one file per process. The user could choose how often these files were created, and
select whether they wanted to write files every n timesteps, or every fixed time interval dt. The user could
choose different writing frequencies for parcels and grids. The second component was a component that
read parcel files into memory, allowing a restart functionality for PMPIC. We designed this so that parcel
files written by m processes could be read in by n processes so that a subsequent simulation could use a
different number of processes from the previous one. Mindful to minimise stress on ARCHER’s Lustre
filessystem, the process with rank 0 opens each file sequentially and reads only the creating process’s
location in the global domain from the file. It then broadcasts this to every other process which then
open and read parcels in from only the required files.
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2.3.3 RK4 Integrator

First we implemented a RK4 integrator. In order to do this we required storage for temporary arrays
during the integration process. The quantities that are evolved are the vorticity and the parcel positions,
whilst the gradients used are the velocities and vorticity tendencies. In total twelve temporary arrays
are needed, six for the initial values of the parcel positions and vorticities, and six for the cumulative
values for the positions and vorticity.

2.3.4 Velocity Inversion

In order to solve for the velocity, we use the definition of vorticity, ω = ∇× u. Imposing that the flow
is incompressible, ∇ · u = 0, we can write u = −∇ ×A, where A = (A,B,C), ∇ ·A = 0, is a vector
potential. We can hence represent the vorticity as

ω = ∇2A. (3)

In semi-spectral space this equation becomes

∂2A

∂z2
− 4π2K2Â = ω, (4)

Where Â is the semi-spectral transform of A. This above equation when using finite difference derivatives
in the z direction, reduces to a tridiagonal problem that can be easily solved. We hence implemented a
tridiagonal solver into PMPIC to be able to solve this equation.

Before we do this, however, we wish to correct the parcel vorticity, ωp, to ensure that ∇ · ω = 0.
This formulation allows us to calculate the vorticity tendency in Section 2.3.5. To correct the vorticity
we define a scalar χ where ω = ωp − ∇χ Taking the divergence of this equation and setting it to zero
we obtain

∇ · ωp = ∇2χ. (5)

This equation also reduces to a tridiagonal problem that can be solved with the tridiagonal solver.
The computational steps to invert the vorticity to produce the velocity field are:

1. Apply the par2grid operation to the three components of the vorticity.

2. Take FFTs of the three gridded components of the vorticity.

3. Calculate ∇ · ω using spectral derivatives (in x and y) and finite difference derivatives (in z).

4. Obtain χ̂ by solving Equation 5 using the tridiagonal solver.

5. Determine ∇χ̂ using spectral and finite difference derivatives (as required) and correct the vorticity.

6. Use the tridiagonal solver to obtain Â from Equation 4.

7. Calculate the semi-spectral velocity field from Â and interse-FFT to obtain the velocity field.

8. Inverse-FFT the corrected vorticity.

9. Apply grid2par for the corrected vorticity and velocity.

In order to test the velocity solver, we constructed an analytical form of ω with a known A, and
compared this to A determined from the solver. Figure 4 displays graphs of the analytical solution of A
with the numerically determined A for horizontal wavenumbers (kx, ky) = (1, 2).

2.3.5 Vorticity Tendency

The vorticity tendency is defined by

∂ω

∂t
= (∇ · F,∇ ·G,∇ ·H), (6)

where F = ωu + bŷ, G = ωv − bx̂ and H = ωw, where b is the buoyancy, (u, v, w) = u, and x̂, ŷ are
unit vectors in the x and y directions respectively.

The steps to calculate the vorticity tendency are as follows:

1. Apply the par2grid operation on the buoyancy.
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Figure 4: Comparison of reference (analytical) values of the velocity potential field against those determined
from the solver.

2. Calculate the FFT of the buoyancy.

3. For F, G and H, determine their components in semi-spectral space.

4. Calculate the divergences of F, G and H using spectral derivatives to determine the vorticity
tendency.

5. Inverse-FFT the components of the vorticity tendency, then apply the grid2par to interpolate this
onto the parcels.

2.3.6 Parcel Splitting and Mixing

In order to simulate the cascade of energy to smaller scales which occurs during turbulence, MPIC splits
parcels into smaller ones, then eventually merges them into surrounding parcels. We implemented this
into PMPIC via two components, a splitting component and a mixing component.

Every parcel carries a quantity called the stretch, defined by

γi(t) =

∫ t

ti

(
ωi ·

dωi

dt

) 1
3

dt, (7)

where ti is the time the parcel came into existence. Parcels are split into two parcels when the stretch
exceeds a value of 4. Upon splitting, the two child parcels have half the volume of their parent, their
stretch is reset to zero, but their other quantities remain identical to the parent’s. The two child parcels
are separated by a distance d = (2Vi/π)1/3 (where Vi is the volume of the parent parcel) along the
direction of the parent’s vorticity vector. The PMPIC implementation of this is identical to the MPIC
implementation save for a parcel haloswap operation which is applied at the end of the process to ensure
that any child parcels that end out outside of the process’ domain are sent to the appropriate process. In
order to test this component we created a set of parcels, and for some set their stretch to a value above
4, then ensured that the child parcels had correct positioning and values.
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Once a parcel’s volume has been reduced (through multiple splittings) below a threshold value (chosen
to be (1/6)3 of the volume of a grid cell), this parcel is removed and its properties are added to surrounding
parcels to ensure conservation of mass. This merging process prevents a runaway increase in the number
of parcels in the simulation, and limits the number of parcels per gridcell to 63. In addition to removal
of small parcels, if a grid cell has too few parcels inside it, a new parcel is created in the centre of
the cell, and ‘absorbs’ the properties of adjacent parcels (once again to conserve mass and other fluid
properties). The mixing procedure is very similar to a par2grid followed by a grid2par operation, with
some intermediate steps:

1. Loop through each parcel and determine which parcels are smaller than the threshold volume for
splitting and hence need to be removed.

2. Carry out a par2grid operation on the parcels that are to be kept. Also perform a par2grid operation
on the parcels to be removed, creating grids of the residual variables.

3. Perform a par2grid and grid2par haloswap on the gridded values for parcels to be kept.

4. If there are fewer than three parcels in a grid cell, create a new parcel in the centre of the cell
and assign to it a volume of twice the minimum volume for a parcel, assigning properties to it
proportional to a weighted sum of the gridded properties (from kept parcels) of the eight corner
points of that cell. Adjust the residual grids to compensate for the transferred grid properties to
the new parcel.

5. Backfill parcels into positions of parcels that were removed.

6. Now perform a par2grid and grid2par haloswap on the residual grid properties

7. Finally perform a modified grid2par operation where the quantities from the residual grids are
added to the existing parcel properties.

It is important that both a par2grid and grid2par haloswap is performed on the grids of kept parcels
before the creation of new parcels in Stage 4. This ensures that grid cells on the edge of the computational
domain have the correct grid values for interpolating onto the new parcels. Similarly, once the new parcels
have been added, par2grid and grid2par haloswaps of the residual grids are required to ensure that these
grids are correct for interpolation back onto the existing parcels.

In order to test parcel removal a number of parcels at random had their volumes reduced below the
minimum volume threshold. Global volume-integrated quantities were determined for the grid and stored.
After the mixing process was complete, the global volume-integrated quantities were re-computed, and
compared against the original values to ensure that they were the comparable. In order to test adding
in new parcels, a number of parcels were removed from a number of cells at random to reduce the parcel
count below three in these cells. Then the global volume-integrated quantities were determined, the
parcel creation process was carried out, then the new volume-integrated properties were compared to the
old ones. For both methods it was found that the global quantities were conserved to a factor of 10−13

when half of the parcels were shrunk/removed.

2.4 Diagnostics

The original intention was to use the MONC I/O server to reduce parcel data from the simulations
and write parcel/grid information to file. Unfortunately it became evident that parcels consume a large
amount of memory and so allocating memory for parcels in an I/O server on a node would potentially
require half of all the memory of that node, meaning we would need to run a simulation with a given
number of compute processes on twice as many nodes if we were to use an I/O server. Without any
I/O server, for simulations with grid resolutions of 256, 512 and 864, we found a minimum of 3, 43 and
216 nodes respectively were required to successfully run simulations. These node counts (especially for
the larger gridsizes) are non-trivial, so using an I/O server would double this minimum number, and
potentially double kAU usage. We therefore decided against using MONC’s I/O server as its use could
significantly increase the cost of running PMPIC simulations.

We instead focused on writing a parallel NetCDF writer component for the grids (one file per timestep
collectively written by every process). This has been based on the existing functionality in MONC to
write checkpoint files outside the IO-server. In MONC, these checkpoint files contain prognostic 3D
fields as well as some 1D fields and metadata. Here, we only create a number of 3D fields at current.
As parallel NetCDF functionality requires a specific version of the NetCDF libraries, compilation of the
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Figure 5: Comparison of the buoyancy in the z− y plane for a 323 grid cell simulation constructed from the
gridded values (left) and from the parcels (right). It can be seen that images constructed from the parcels
have considerably more detail as they are able to resolve sub-gridcell structure.

NetCDF routines has been made optional: a version of the code without NetCDF can be compiled by
invoking make nonetcdf or make nonetcdf-debug. The global grid coordinates are calculated in the
NetCDF output routine, so that the output data includes these. A difference with the checkpoint output
in MONC is that both a time variable and a time dimension are included, which makes it easier to further
process the data (this means the output fields are actually 4-dimensional, rather than 3-dimensional, even
though they only contain 1 time step). A guide to compiling the NetCDF libraries has been included as
part of the model wiki on the website.

Due to the size of parcel checkpoint files (up to 2GB per process) we decided against creating an
equivalent parallel NetCDF writing component for parcels, as the resultant files could be very large
and therefore difficult to transfer (though a non-parallel NetCDF output component will be one of our
priorities for future development). We instead focused on writing a visualisation script that could visualise
a quantity (e.g. buoyancy) in a plane from the parcel properties. This is beneficial over simply obtaining
this from the gridded variables as a higher resolution can be obtained using parcels. To do this, our
script determines which files correspond to the regions in the global domain that are needed to construct
the plane. Each required file is then read in and the relevant parcel properties are interpolated onto the
plane to produce the image. For information on the specific interpolation method employed, please see
Böing et al. (Submitted). An example of an image produced by the parcel visualisation script (and the
corresponding image constructed from the grid variables) from a simulation with 323 gridpoints is shown
in Figure 5.

3 Performance Comparisons with MPIC and Scaling Tests

In this section we will compare PMPIC performance with MPIC, and then go onto investigating how
PMPIC performs at scale.

3.1 Single Node Performance

In order to compare PMPIC with MPIC, we consider the performance of PMPIC on a single node, as
MPIC (being parallelised solely with OpenMP) can only scale to one node. We ran a 1283 simulation
for 8 time units, using 1, 2, 4, 8 and 16 MPI processes, and 1, 2, 4, 8 and 12 OpenMP threads. Figure
6 displays speedup graphs for MPIC, and PMPIC using MPI processes and OpenMP threads. PMPIC
(using only MPI processes) produces the best speedup, with near ideal speedup to 4 MPI processes, then
sub-ideal speedup to 16 processes. At 16 processes a speedup of 9.09 is achieved (parallel efficiency of
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Figure 6: Speedup comparisons between MPIC and PMPIC using MPI processes and OpenMP threads.

57%). MPIC achieves the second best speedup, with a speedup of 6.68 with 12 cores (parallel efficiency
of 56%). PMPIC’s OpenMP performance is the worst, with a peak speedup of 3.05 at 12 cores (parallel
efficiency of 25%).

In order to determine the causes of the bad OpenMP scaling and poor MPI scaling beyond 4 processes
in PMPIC, we consider the timings for each of the main operations carried out in PMPIC. First of all,
let us consider the single-core case, and look at the relative times for each operation. Figure 7 displays
the proportion of the runtime taken up by each operation. The single largest operation (by time) is the
FFT operation, followed by par2grid and mixing. Parcel splitting is the least significant operation at
only 3% of the total runtime. Figure 8 displays the speedups for OpenMP and MPI for each operation.
For OpenMP, we find that parcel splitting and the FFT routines have the worst speedups. The mixing
routines cannot be parallelised with OpenMP so the lack of a speedup is to be expected here. Also they
take up a small proportion of the total runtime of a simulation so their poor scaling is of little concern.
With the FFT routines - which consume the largest proportion of the runtime - although the execution
of the FFTs and some data transposition is parallelised, the required MPI_Alltoall communication step
is not parallelisable, and so acts as a bottleneck in OpenMP. The next two poor performing operations
are par2grid and the RK4 integrator. It is unclear why OpenMP performance is so poor here as these
are completely parallelised via OpenMP. We suspect we need to tune the chunk size in the OpenMP
DO loops. Considering the MPI performance, we see that all operations scale well to 4 processes, and
then scale less well beyond this, with the notable exception of the FFT routines. This performance
drop above 4 processes can be attributed to a load imbalance being introduced due to the domain
decomposition, whereby some processes contain fewer parcels, so any operation involving parcels will
have a load imbalance introduced. This is why the FFT operations, which are purely grid-based scales
better than the other operations, which involve parcels. Figure 9 displays the number of parcels per
process as a function of timestep for 4 and 8 processes.

In terms of overall performance, MPIC was found to achieve 353,000 parcels operations per core
per second, and 198,000 on 12 OpenMP threads. For a single core, PMPIC achieves 563,000 parcel
operations per core per second and on 12 OpenMP threads it achieves 131,000 parcel operations per core
per second (slightly less than MPIC), however on 16 MPI processes achieves 412,000 parcel operations
per core per second, which is better performance than MPIC. Overall, despite achieving poorer OpenMP
performance, using MPI PMPIC has better scaling and performance than MPIC.
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Figure 7: Fraction of the total runtime of each operation in PMPIC for a simulation using 1 core with 1283

gridcells.

Figure 8: The speedup of the operations for MPI (left) and OpenMP (right)
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Figure 9: Number of parcels per process as a function of timestep for simulations with 4 (left) and 8 (right)
processes, demonstrating that an imbalance of a factor of 1.6 between the number of parcels per process for
the simulation with 8 processes.

3.2 Performance at Scale

We now shall consider the performance of PMPIC for large simulations. We consider simulations with
5123 and 8643 gridcells respectively. Figure 10 displays the speedup graph for the simulation with 5123

gridcells for 1, 2 and 4 OpenMP threads per process. With 1 thread per process, we find good scaling
from 1024 to 8192 cores, and the scaling deteriorates from this point. Considering the speedup of the
operations (Figure 11) we find that all the operations scale ideally up to 32768 processes except for the
FFT operations, which do not scale beyond 2048 processes. It is clear therefore that the FFT routines (in
particular the MPI_Alltoall call) are a bottleneck for the simulations at this scale. In order to determine
if OpenMP can help alleviate this (by reducing the number of MPI processes for a given number of nodes)
we investigated some simulations with multiple OpenMP threads per process for larger core counts, which
gave similar performance to the pure MPI simulations.

Figure 12 displays the speedup for simulations with 8643 gridcells. It shows that we achieve good
scaling to 20,736 MPI processes. Similar to the 5123 gridcell case, we find that all operations scale ideally
for all core counts except for the FFT routines, which achieve a speedup of only 2.2 at 46,656 cores. We
would have liked to have investigated the effects of OpenMP threads on the scaling of these simulations,
however we had run out of budget on ARCHER so were unable to run further simulations. For 5184
processes, we found that PMPIC achieved 140,000 parcel operations per core per second. We note that
the load imbalance mentioned above - caused by processes having different numbers of parcels - is still
present in these simulations, however as it is present in all simulations its effects are not visible in the
speedup graphs. In these simulations the imbalance is typically a factor of 5. Given that the single core
performance of PMPIC is 563,000 parcel operations per core per second, and the performance at scale is
approximately 5 times lower, we believe that this load imbalance is the main contributing factor in the
performance decrease. Figure 13 displays the buoyancy in the y− z plane for the a simulation with 8643

gridcells at t = 2, 4, 6 and 8.

4 Discussion and Conclusions

In this project we implemented the ‘Moist Parcel In Cell’ (MPIC) code into the ‘Met Office NERC Cloud
Model’ (MONC), allowing MPIC to benefit from MPI parallelisation, and making MONC parcel (parti-
cle) aware. We call this new code the ‘Parallel Moist Parcel In Cell’ (PMPIC) code. The work involved
modifying the MONC Model Core to include the basic parcel operations required for MPIC’s function-
ality. This work included implementing grid-to-parcel and parcel-to-grid interpolation operations, as
well as permitting MONC to use a 4th Order Runge Kutta integrator. We then wrote various MONC
components to implement the physics of MPIC. Initially we had planned to modify MONC’s I/O server
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Figure 10: Speedup of 5123 gridcell simulations with 1, 2 and 4 OpenMP threads.

Figure 11: Speedup of operations in 5123 gridcell simulations demonstrating that all the operations save for
FFTs scale ideally.

15



Figure 12: Speedup of operations in 8643 gridcell simulations. Like shown in Figure 11, all operations scale
ideally except for the FFTs.

to do in-situ analysis of the simulation data during a simulation, however due to memory limitations we
decided against this as it could possibly double the computational cost of a simulation.

Comparing the single-node performance of PMPIC and MPIC, we found that the PMPIC (using MPI
processes) scaled better than MPIC, however its OpenMP performance was poor, achieving a speedup
of only 3 using 12 cores. MPI performance was limited by an imbalance in the number of parcels per
process, due to the spatial decomposition of the simulation. Considering large simulations, we found
that the PMPIC’s performance was limited by the Fast Fourier Transform (FFT) routines, which did
not scale well beyond a few thousand MPI processes. Other operations scaled ideally. Despite these
limitations, we obtained good scaling (greater than 70% parallel efficiency) of up to 8192 MPI processes
(using a 5123 grid) and 20,736 processes (using a 8643 grid).

We note that although we did not implement the I/O server functionality, we did implement parallel
NetCDF functionality for writing the grids to file. Although we did not have time to look into further
work on in-situ analysis, we believe the way forward would be to write a MONC component (or series of
components) that carries out analysis and I/O on the parcel data.

The load imbalance between processes affects the performance of PMPIC beyond 4 cores. This is due
to the test simulation having a sphere of parcels in the centre with a higher number density (43 per cell
compared to 23 in the background), with most parcels being split in this central region. This results in
some processes having many (up to 5×) more parcels than other processes. Choice of a different initial
condition with a more spatially uniform parcel distribution would help alleviate this issue, although our
choice of initial condition here was constrained by the existing MPIC data which we wished to compare
against. Future work could include implementing dynamic load balancing into PMPIC, although we note
that this would be a major undertaking, as much of MONC’s model core would need to be re-written to
deal with dynamically changing each process’ local grid size during runtime.

OpenMP performance was found to be poor in PMPIC. The worst performing operations were the
FFTs (un-parallelisable), the Runge Kutta integrator and the grid2par interpolation. Future work would
be to investigate if re-factoring these operations, or by changing chunk sizes can lead to better perfor-
mance. With better OpenMP performance, we may be able to partially overcome MPIC’s FFT scalability
issues by using fewer MPI processes per node, hence decreasing the number of processes involved in the
all-to-all communications.

For large simulations, are by far the most significant cause of poor scaling. Minimising the use of
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Figure 13: Example evolution of the buoyancy in a simulation with 8643 grid cells at t=2,4,6 and 8.
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FFTs should therefore improve PMPIC’s scaling. In PMPIC, FFTs are used in two different places. In
the velocity inversion, the velocity is calculated using a FFT solver, whereby the solution is determined
in semi-spectral space and then transformed back into positional space. Many spatial derivatives are
also calculated in Fourier space, then transformed back into positional space. Implementing a solver that
does not use Fourier transforms, and/or swapping Fourier derivatives with finite difference derivatives
should therefore aid scalability to many tens of thousands of MPI processes.

In summary, the work in this eCSE project has allowed the Moist Parcel In Cell method to scale
beyond one node, up to many thousands of cores, and allows more detailed simulations to be carried out,
allowing better science to be carried out.
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