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Abstract—By common consent, one of the largest 
challenges facing the computational science community 
on moving from terascale, through petascale towards 
exascale HPC facilities is the ability of parallel software 
to meet the scaling demands placed on it by modern 
HPC architectures. Understanding how well current 
applications scale and how their scaling and use pattern 
has changed (or not changed) through the recent rise of 
multicore processor architectures provides insight into 
how well current HPC users may be able to exploit 
future systems. In addition, understanding both the 
requirements and limitations of users and their 
applications is critical to research agencies and other 
organisations provisioning shared facilities for their user 
communities. 

In this paper we analyse the usage of parallel 
software across two UK national HPC facilities: 
HECToR (initially a Cray XT and latterly Cray XE 
system) and ARCHER (a Cray XC30 system). These 
systems have spanned the rise of multicore 
architectures: the initial HECToR installation was based 
on single-socket, dual core AMD Opteron technology 
and the current ARCHER installation is based on dual-
socket, 12-core Intel Ivy Bridge technology. Both are 
general-purpose systems that support a wide range of 
research communities and more than 1500 users. In 
particular, we analyse and comment on: 

• Trends in application usage over time: which 
applications have declined in use and which have 
become more important to particular research 
communities; and why might this be? 

• Trends in the sizes of jobs: which applications 
have been able to increase their scaling properties 
in line with architecture changes and which have 
not? Can we identify why this is the case? 

• Changes in research areas on the systems: which 
areas have appeared/increased and which have 
declined? 

The in-house Python tool that is used to collect and 
analyse the application usage statistics from the Cray 
ALPS scheduler is described. This tool does not depend 
on the monitored software being installed in a central 
location; rather it uses regular expressions to identify 
the executables and so includes data on software 
installed locally by users. Using this method we are 

typically able to automatically associate more than 70% 
of the core hours used on the systems with known 
applications. Increasing the coverage is solely dependent 
on contacting users for details of the applications that 
they use. Each known application also has metadata 
associated with it that describes properties such as 
programming language, parallel programming models 
used, research area, license type, etc. and so we are also 
able to analyse usage based on these properties. Amongst 
other analyses, this provides insight into changes in 
prevalence of parallel programming models in different 
research areas. 

The analysis reveals shows that there are two broad 
classes of scaling limitations on applications: the first is 
obviously due to limitations in the applications 
themselves and can potentially be overcome with a 
suitable investment of development effort; the second is 
due to limitations in the scale of the scientific problem 
being studied that have an intrinsic limitation in the 
parallelism available to the applications. 

We conclude with a look forward to future HPC 
facilities and comment on how this may impact 
particular research areas and applications based on the 
preceding analysis. 
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I.  INTRODUCTION 
Supercomputer processor technology has undergone a 

large amount of change over the past decade – from single-
core architectures, through dual- and quad-core architectures 
to current multicore architectures with 10’s of cores per 
processor. The UK national supercomputing services 
HECToR [1] and ARCHER [2] have spanned the change 
from low count multicore processors to the current day 
where we have two 12-core processors per compute node. 
As both HECToR and ARCHER have been Cray systems 
supporting similar research communities this provides an 
opportunity to analyse how much effect this change has had 
on the applications used by researchers. 

If we can understand how applications have (or have 
not) been able to cope with changes in requirements due to 
changes in processor technology we will have a better 
understanding of how future architecture changes (for 



example, the availability of many-core processors) will 
affect different applications and research communities. 

The UK national supercomputing services are provided 
by a number of partners: 

For ARCHER, the partners are EPSRC [3] and NERC 
[4], the service is run by EPCC [5] and STFC Daresbury 
Laboratory [6]; Computational Science and Engineering 
support is provided by EPCC; and the hardware is provided 
by Cray Inc. [7]. 

For HECToR, the partners were the UK research 
councils: EPSRC, NERC and BBSRC [8], the service was 
run by EPCC at the University of Edinburgh and STFC 
Daresbury Laboratory; Computational Science and 
Engineering support was provided by NAG Ltd. [9]; and the 
hardware was provided by Cray Inc. 

II. SYSTEM ARCHITECTURE DETAILS 
Table 1 summarises the different architectures for the 

systems considered in this paper. The major impact on 
applications has been the increase in core counts (particularly 
in moving from HECToR Phase 2a to HECToR Phase 2b) 
and the corresponding increase in concurrency on node. This 
has also impacted applications as the amount of memory per 
core (and memory bandwidth per core) decreased across the 
HECToR Phases; although this trend has been reversed 
somewhat on ARCHER due to the increased memory per 
node and increased memory bandwidth available with the 
Intel processor technology. The change in interconnect 
technology has had little impact on most applications 
although the increase in stability that accompanied the switch 
from SeaStar+ (XT) to Gemini (XE) has benefitted all users. 

III. OVERALL COMPARISONS 
Figure 1 shows the percentage of core hours used on the 

systems broken down by research area. 
The largest growth areas as time has progressed are 

materials science and biomolecular simulation; the latter has 
grown from very modest use on HECToR Phase 2a to over 
10% of all core hours used on ARCHER. This increase is at 
least partially due to the significant development of 
applications (e.g. Gromacs) that have been able to exploit 
MPP systems such as HECToR and ARCHER for this 
research area. Computational Fluid Dynamics (CFD) have 

increased their usage going from HECToR to ARCHER and, 
as we will see below, this is mostly due to a large increase in 
the number of cores that the CFD codes are able to exploit. 
Climate/ocean modelling has stayed largely constant across 
systems. In the “Others” category the area that has grown the 
most from HECToR to ARCHER is Medical Physics (grown 
from 0.01% to 0.5%). Although this area is not currently 
using large amounts of time we expect to continue to see 
growth as the codes used to simulate, for example, blood 
flow using Lattice Boltzmann method, have the potential to 
scale to very large numbers of cores. 

Astrophysics, Cosmology and Particle Physics are not 
represented, as they do not form part of the partners that fund 
and run the UK national supercomputing services; they have 
their own HPC facilities in the UK including an IMB BG/Q 
for QCD and various smaller HPC clusters for astronomical 
research. 

Table 2 shows the top 10 codes used on each of the 
systems (ordered by total core hours used). 

The highly used codes across the four systems generally 
fall into a number of broad classes: 

 
• Periodic Electronic Structure: VASP, CP2K, 

CASTEP, CRYSTAL, CASINO. These codes are 
generally used for materials science or chemistry 
research and usually use 3D parallel FFTs and 
dense/sparse linear algebra. 

• Classical atomic structure modelling: Gromacs, 
NAMD, DL_POLY, LAMMPS. These N-body 
simulation codes are generally used for biopolymer 
simulation (Gromacs, NAMD) or materials science 
(DL_POLY, LAMMPS) and often also require 
parallel 3D FFT for electrostatic interactions. 

• Climate Simulation and Ocean Modelling: UM 
(MET Office Unified Model) WRF, NEMO, 
MITgcm, Oasis. These codes generally employ a 
structured grid to simulate the ocean or atmosphere 
and also include Earth system models that couple 
atmosphere and ocean grid-based models. 

• Computational Fluid Dynamics: (CFD): Hydra, 
INCOMPACT3D, PDNS3D, HiPSTAR. These 
codes employ structured and/or unstructured grids. 

 

Table 1: Architecture details for the systems considered in this paper. 
System 
(Type) 

Processor Arch. 
(Clock Speed) 

Cores per Node 
(Sockets) 

Memory/Node 
(Bandwidth/Core) 

Nodes 
(Cores) 

Interconnect Rpeak 
(Tflop/s) 

HECToR 
Phase 2a 

(Cray XT4) 

AMD Barcelona 
(2.3 GHz) 

4 
(1) 

8 GB 
(3.2 GB/s) 

 

5664 
(22656) 

SeaStar+ 63.4 

HECToR 
Phase 2b 

(Cray XE6) 

AMD Magny-
Cours 

(2.1 GHz) 

24 
(2) 

32 GB 
(3.6 GB/s) 

1856 
(44544) 

Gemini 372.8 

HECToR 
Phase 3 

(Cray XE6) 

AMD Interlagos 
(2.3 GHz) 

32 
(2) 

32 GB 
(2.7 GB/s) 

2816 
(90112) 

Gemini 829.0 

ARCHER 
(Cray XC30) 

Intel Ivy Bridge 
(2.6 GHz)  

24 
(2) 

64 GB 
(4.9 GB/s) 

4920 
(118080) 

Aries 2550.5 



Figure 1: Breakdown of usage by research area. 

 
 

 
Table 2: Top ten codes by core hours used for each of 

the systems. 
HECToR 
Phase 2a 

HECToR 
Phase 2b 

HECToR 
Phase 3 

ARCHER 

UM VASP VASP VASP 
VASP UM CP2K CP2K 

CASTEP CASTEP UM UM 
Hydra CP2K CASTEP Oasis 
CP2K INCOMPACT3D Gromacs Gromacs 

Chroma NEMO DL_POLY CASTEP 
NAMD Gromacs PDNS3D HiPSTAR 

ChemShell MITgcm MITgcm NEMO 
WRF ChemShell NEMO LAMMPS 

DL_POLY PDNS3D CRYSTAL CASINO 
 
Codes in the top ten lists above that do not fall into 

these categories are: ChemShell (QM/MM computational 
chemistry) and Chroma (lattice QCD). These areas do not 
show up across all systems in a large way and so are not 
further analysed in this paper. 

Figure 2 shows the job size distribution for each of the 
systems (by core hours used) and reveals that as time has 
gone on, the distribution of core hours has used has 
generally shifted to larger job sizes although the change 
has not been dramatic. It is also clear that not many users 
are really managing to use the very largest jobs possible on 
the systems for “production” jobs (the codes that do run at 
these very large scales are discussed in more detail in the 
sections below). In general, this capability is being used 
for testing scaling properties and for benchmarking. 

This graph reveals that the biggest single change in job 
size profile was moving from HECToR Phase 2a to 
HECToR Phase 2b and that, since this step, the change has 
been modest. This can be understood by looking at the 
processor architecture, this corresponds to the change from 

4 cores per node (single socket Cray XT nodes) to 24 cores 
per node (dual socket Cray XE nodes). This change is a 6× 
increase in concurrency per compute node leading to an 
enforced requirement on users (and hence applications) to 
be able to scale to higher core counts. The distributions 
above taken with the top code table suggest that, on the 
whole, applications were able to cope with this 
requirement for increased parallelism. Applications, CP2K 
for example, that were able to exploit this increased 
parallelism have been able to grow their share of usage. 

Table 3 shows a breakdown of time usage on the 
systems by programming languages employed by parallel 
applications. The distribution is relatively stable across 
system with 60-70% of usage attributed to Fortran 
applications and 5-15% attributed to C/C++. The only 
significant change has been the increase in C usage from 
less than 1% on HECToR Phase 2a to 6% on ARCHER. 
This growth is due to the increase in the use of the 
Gromacs code (which is written in C). 

 
Figure 2: Overall job size distribution for each system. 

 
 
 



Finally, Table 4 shows the breakdown of usage by 
parallel programming models across the systems. MPI, of 
course, dominates; accounting for at least 70% of the use 
on all systems and it is a reasonable assumption to make 
that the remaining unidentified usage has a similar 
breakdown and this would push the MPI usage number 
above 95%. The only model used other than MPI are 
codes that interface with the Cray interconnect at a low 
level using the DMAPP API. We also monitor the usage 
by codes that can use a hybrid message passing plus 
shared memory approach and their usage has roughly 
doubled from 16% on HECToR Phase 2a to 28% on 
ARCHER. This increase has been a key feature in most 
codes that are able to scale to very high core counts 
(O(10,000)). 

We now look at particular application types that have 
high usage across all systems in more detail. 

IV. APPLICATION TYPES 

A. Periodic Electronic Structure 
Periodic electronic structure codes generally account 

for more than 30% of the time used on all the systems 
covered here and so their scaling properties are key in 
determining the overall distribution of jobs on the system. 
All of the codes in this class are parallelised using message 
passing via MPI (CP2K also supports a hybrid MPI + 
OpenMP model and CASTEP can also use a hybrid MPI + 
System V Shared Memory Segments model. Figure 3 
shows how different periodic electronic structure codes 
have changed their share of the usage over the systems and 
Table 5 the median job sizes for each of the codes on the 
systems. CRYSTAL has a much larger median job size 
than all other applications in this area possibly reflecting 
the different approach it has (using purely localised basis 
functions). 

 
Table 3: Breakdown of usage by programming 

language. 
 HECToR 

Phase 2a 
HECToR 
Phase 2b 

HECToR 
Phase 3 

ARCHER 

Fortran 63.3% 65.2% 66.8% 69.3% 
C++ 8.9% 2.7% 4.4% 7.4% 

C 0.4% 3.6% 5.4% 6.3% 
Unidentified 29.1% 30.0% 24.2% 19.4% 

 
Table 4: Breakdown in usage by parallel model. 

 HECToR 
Phase 2a 

HECToR 
Phase 2b 

HECToR 
Phase 3 

ARCHER 

MPI 56.0% 46.2% 48.0% 54.3% 
MPI 

+OpenMP 
10.7% 15.8% 21.7% 22.8% 

MPI 
+SharedMem 

5.6% 9.0% 5.5% 5.0% 

DMAPP 0.2% 0.5% 1.4% 0.6% 
Unidentfied 29.1% 30.0% 24.2% 19.4% 

Figure 3: Periodic electronic structure code usage 
across systems as a function of % core hours used. 

 
 
Table 5: Median job sizes (in cores) for periodic 

electronic structure codes on each of the systems. 
 HECToR 

Phase 2a 
HECToR 
Phase 2b 

HECToR 
Phase 3 

ARCHER 

VASP 240 456 480 240 
CASTEP 252 720 512 360 

CP2K 224 1320 608 672 
ONETEP 104 504 416 864 
Quantum 
Espresso 

60 72 448 192 

CRYSTAL 144 4032 3648 2808 
 

VASP is by far the dominant code on all systems. 
CASTEP usage has stayed pretty constant, apart from a 
brief increase on HECToR Phase 2b, while CP2K, 
ONETEP and CRYSTAL have all increased their share 
from the quad-core to the multi-core systems. 

The change in used time as a function of job size for 
VASP is shown in Figure 4. There was a distinct shift to 
larger job sizes in going from quad-core to multi-core 
nodes as users were forced to adapt to the new 
architecture. The balance of the parallel decomposition in 
VASP can be altered at run time and this flexibility allows 
the code to adapt somewhat to changing architectures.  

If we compare CASTEP and CP2K job sizes 
(CASTEP: Figure 5, CP2K: Figure 6) we can see that the 
ARCHER CASTEP use tails off by 3072 cores while 
CP2K jobs have significant usage up to the 6145-12288 
core range. The trend across systems for the two codes 
also shows that both codes increased their job sizes on the 
move from quad-core to multi-core architecture. It is, of 
course, difficult to say if the difference in job sizes 
between CASTEP and CP2K are due to inherent scaling 
limits in the codes or due to the scaling limits in the 
scientific problems that the codes are used to treat. In 
addition, as CASTEP has been around longer than CP2K 
there may be some user “inertia” that means that the users 
continue to run the same job sizes that they have always 
run as they have an acceptable time to solution for their 
research. 

The remaining periodic electronic structure codes have 
relatively low usage so we have not explored their data in 
detain in this paper but the distribution data is available 
online [10]. 



Figure 4: VASP job size distribution for each system. 

 
 
Figure 5: CASTEP job size distribution for each 
system. 

 
 
Figure 6: CP2K job size distribution for each system. 

 
B. Classical Atomic Structure Modelling 

The usage profile of the N-body classical atomic 
structure modelling codes is shown in Figure 7 and the 
median job sizes in Table 6. There are really two sub-
classes of code here: Gromacs, NAMD and Amber of 
generally used for biomolecular simulation (proteins, 
DNA/RNA, lipids, etc.); and DL_POLY, LAMMPS are 
used for materials science applications. For the 
biomolecular codes, the main story is the growth in the use 

of Gromacs from the quad-core to multi-core systems; 
NAMD, in contrast, has decreased its share on the 
systems. Moving from HECToR to ARCHER it is 
noticeable that the use of DL_POLY has dropped while 
the use of LAMMPS has grown. All of the codes 
discussed here employ hybrid MPI+OpenMP and this area 
is the least Fortran-centric area on UK supercomputers 
with two of the codes (NAMD, LAMMPS) being C++ 
based and one (Gromacs) using C. 

For these codes, the scalability is strongly influenced 
by the scientific problem being treated. This can be 
illustrated by looking at the job distribution for DL_POLY 
(Figure 8). 

Although the intrinsic scalability of the code has not 
changed on going from HECToR to ARCHER, the job 
size mix is fundamentally different. In particular, a large 
amount of time was spent on very large jobs on HECToR 
Phase 2b/3. This is a direct consequence of a particular 
research problem being investigated using very large 
DL_POLY simulations. Since then there has not been that 
requirement for such large systems to be studied using 
DL_POLY and hence there have not been such large jobs 
on the system. This illustrates that the variation in problem 
size for these N-body codes in the materials science area is 
very large. 

In contrast, the biomolecular area have much more 
constant, constrained simulation sizes (as proteins and 
other biopolymers have a finite size) and this is reflected 
in the job size distribution for Gromacs (Figure 9) where, 
once it was the dominant code in the space, the jobs sizes 
do not vary much. 

 
Figure 7: N-body code usage on each system. 

 
 
Table 6: Median job sizes (in cores) for N-body codes 

on each of the systems. 
 HECToR 

Phase 2a 
HECToR 
Phase 2b 

HECToR 
Phase 3 

ARCHER 

Gromacs 56 1152 640 432 
NAMD 32 72 352 480 
Amber 16 72 96 24 

DL_POLY 128 4104 32000 72 
LAMMPS 96 384 480 456 
 

 
 



Figure 8: DL_POLY job distribution for each system. 

 
 
Figure 9: Gromacs job size distribution for each 
system. 

 
 

Figure 10: Climate/ocean code usage on each system. 

 
 

Table 7: Median job sizes (in cores) for climate/ocean 
modelling codes on each of the systems 

 HECToR 
Phase 2a 

HECToR 
Phase 2b 

HECToR 
Phase 3 

ARCHER 

UM 256 864 224 1392 
WRF 400 400 704 2064 

MITgcm 16 504 96 384 
NEMO 64 1536 1376 1920 
Oasis 32 144 384 5232 

 
 

There has been a small growth in job sizes on 
ARCHER as people start to simulate larger systems (for 
example, proteins embedded in membranes) but the job 
size is essentially static even though the weak scaling 
properties of the code mean that for large systems it can 
scale to huge numbers of cores. The peak job size here 
reflects the natural size of the scientific problem and not 
the code scaling properties. The move to larger HPC 
systems does open up the opportunity to use the increased 
potential throughput to implement more sophisticated 
statistical analyses. 

C. Climate Simulation and Ocean Modelling 
In this area, where structured grids are the norm, there 

is often a drive to higher and higher resolution (finer grids) 
and so the potential for useful weak scaling should be 
strong. We would expect any limits on the scaling of these 
codes to be due to code features and/or design rather than 
limits inherent in the scientific problem being studied. The 
majority of the codes in this area employ pure MPI as their 
parallel method of choice although there are exceptions 
such as the ECMWF IFS code that employs Coarray 
Fortran. 

The reduction in Climate/Ocean Modelling usage 
across the HECToR phases seen in Figure 1 above can be 
traced mainly to the gradual reduction in usage of the 
MET Office Unified Model (UM) as shown in Figure 10 
below. The increase in the % of ARCHER used for 
Climate/Ocean Modelling compared to HECToR Phase 3 
is mainly due to the emergence of the Oasis coupler that is 
used to couple the UM atmospheric model to the NEMO 
ocean model. The job size distribution for the UM for the 
various systems (Figure 11) demonstrates how the drive to 
higher resolution in these models allows the jobs to scale 
up as the size of the resource increases. The job size 
increases tend to lag a bit behind the increase in hardware 
for a number of reasons including: code development to 
ensure that the solver, load balancing and memory use 
work properly as the codes scale up; a requirement to 
verify the models on the new hardware; and the increase in 
stochastic sampling that also accompanies the increase in 
resolution. The same trends are also visible in the data for 
the other codes: WRF, MITgcm and NEMO (see the usage 
reports online [10]). 

The distribution for the Oasis coupler (Figure 12) looks 
very different. In this case, the use on HECToR was very 
low and seems to have been purely for code porting and, 
latterly, benchmarking. On ARCHER the code has been 
used at scale for large amounts of time at a single job size 
suggesting that it is now being used for “production” 
research. The parallel nature of the coupler allows it to 
exploit larger numbers of cores as it combines the 
parallelism of the UM and NEMO leading to one of the 
few high scaling production codes on the ARCHER 
service. 

 



Figure 11: UM job size distribution for each system. 

 
 
Figure 12: Oasis job size distribution for each system. 

 
 

D. Computational Fluid Dynamics (CFD) 
As with the climate and ocean modelling codes, CFD 

codes of various sorts tend to employ structured or 
unstructured grids. As well as the tendency to increase the 
resolution of the grids there is often a drive to simulate 
larger systems (i.e. larger grids). This potential weak 
scaling provides opportunities for these codes to scale to 
high core counts. There is also a push to greater 
complexity with more complex geometries that include 
dynamic elements (for example rotating turbine blades) 
and these increase the difficulties of maintaining 
acceptable load balancing and avoiding global 
communications as the codes scale to larger and larger 
numbers of cores. 

This research area employs a wider variety of codes 
than any other area on the systems, the major codes and 
their use on the various systems are listed in Figure 13 and 
the median job sizes for the codes listed in Table 8. 

A different code has had the largest usage on each of 
the three systems: Hydra on HECToR Phase 2a, 
Incompact3D on HECToR Phase2b, PDNS3D on 
HECToR Phase 3 and HiPSTAR on ARCHER. The large 
increase in “Others” on ARCHER is due to increased 
usage of Code_Saturne and Nektar++. 

 

Figure 13: CFD code usage on each system. 

 
 
Table 8: Median job sizes (in cores) for CFD codes on 

each of the systems 
 HECToR 

Phase 2a 
HECToR 
Phase 2b 

HECToR 
Phase 3 

ARCHER 

HiPSTAR  768 7776 10344 
Hydra 256 1056 800 1248 

PDNS3D 508 7200 12544 6144 
OpenFOAM 512 768 992 288 
Incompact3D 2048 6912 3616 2064 
 

Most of the codes in this area are Fortran based and 
use MPI parallelism, exceptions include: OpenFOAM and 
Nektar++, which are both C++ codes and HiPSTAR, 
which is Fortran-based but uses a hybrid MPI+OpenMP 
approach. 

As can be seen in Figure 14, the job size distribution 
for the Hydra code has not changed across different 
systems. One reason for this is that as there are so many 
different codes in the CFD space a single code tends to be 
used by a particular research group for a particular 
problem. The uniformity of the Hydra job sizes suggests 
that it is being used to study the same research problems 
across all the systems. 

As we progress from Phase 3 to ARCHER, HiPSTAR 
becomes the dominant code in this area, its job size 
distribution is shown in Figure 15. The distribution and 
usage levels reflect that code development took place on 
HECToR Phase 2b/3 before the code went into full 
production on ARCHER. This code is able to exploit 
larger numbers of cores for the scientific research of 
interest than almost any other on ARCHER. This reflects 
the fact that for codes in this area the factor limiting the 
scaling is often not the scientific problems themselves but 
rather the development of the code itself. There has been a 
large amount of software development work on this 
application to improve the scaling using hybrid MPI 
+OpenMP parallelism.  
 



Figure 14: Hydra job size distribution for each system. 

 
 
Figure 15: HiPSTAR job size distribution for each 
system. 

 

V. CONCLUSIONS 
Almost all of the codes that have significant usage on UK 
national supercomputing facilities coped well with the 
change in architecture from quad-core to high core count 
multi-core and have been able to increase the core counts 
that they can exploit. Most have not been able to increase 
the core counts six-fold (in line with the increase in 
parallelism on a node) but the majority has managed to 
increase their job sizes at least two-fold. The codes that 
have been able to increase their scaling in line with 
architecture changes are those that have a drive towards 
weak scaling from their research problems. 

The scaling prospects for codes on the UK national 
supercomputing facilities tend to fall into two broad 
classes: 

 
1. Those where the scaling is naturally limited by 

the scientifically interesting problems that are to 
be studied – most of the periodic electronic 
structure codes and the classical atomistic 
simulation codes fall into this category 
particularly when applied to biomolecular 
systems. 

2. Those where the scaling is limited by the code 
development – most of the grid-based problems 

(climate/ocean modelling and CFD) fall into this 
category. Here the science tends to drive to 
problems that have the potential for better scaling 
but code development is usually required to 
provide the scaling in an efficient way. 

 
Looking to the future, it may seems that scientific 

problems (or codes) that fall into the first class have no 
real prospects for exploiting even larger parallel resources 
in a useful way but this is not generally true. These codes 
and research problems will be able to exploit future 
architectures to employ more sophisticated sampling 
techniques. The trend to increasing computational power 
per node should serve them well in this regard and 
emerging sampling frameworks that are code agnostic 
(e.g. PLUMED, VOTCA) will continue to develop to meet 
this need. Codes and problems in the second class will 
require continued code development to exploit future HPC 
architectures but the potential for scaling driven by 
research need is inherent in the research problems they are 
used for. 

A number of code development initiatives in the UK 
have provided support to allow codes to exploit new 
architectures. The ARCHER eCSE programme [11] and its 
predecessor, the HECToR dCSE programme [12] have 
provided focused effort to improve code specifically for 
the UK national supercomputing services. Many of the 
applications in this paper have benefitted from funding 
through this route: particularly CASTEP, CP2K, 
DL_POLY and NEMO. The Cray Centre of Excellence at 
the University of Edinburgh has helped develop a number 
of codes including the UM and HiPSTAR. In addition, 
EPSRC has a wider ranging software strategy [13] that 
takes a broader approach to improving research software: 
improving both the simulation software itself and the 
supporting software (libraries, pre- and post-processing 
tools). For both the classes of software discussed above 
continuing software development effort is key to allowing 
them to exploit future HPC technologies. 

VI. FUTURE WORK 
We will work with the ARCHER user community to 

decrease the number of unidentified codes on the system. 
We also plan to work with specific communities to 
understand if the picture of code usage matches their 
expectations, and if not, why not. We will also work with 
the UK research councils to understand how this analysis 
can help feed into future UK HPC system procurements. 
Finally, we would like to generalise the analysis tool so 
that it can generate the same information from the range of 
HPC services available in the UK and compare application 
usage across a range of HPC services. 

VII. DATA COLLECTION AND ANALYSIS 
The data collection and analysis tool is written in-

house in Python and is available via GitHub [14]. 
Interrogating ALPS every hour via the apstat command 
collects is used to collect usage data. 



The analysis tool can then process these usage logs to 
produce statistics on code usage. Each application is 
defined in a separate file that includes: 

 
• The name of the application 
• The regex that is used to identify the 

application from the logs (the logs store 
executable names) 

• The primary programming language (and 
version) for the application 

• The parallel programming model employed in 
the application 

• The application type (e.g. structured grid) 
• The primary research area for the application 

(e.g. materials science) 
• The license type for the application 

 
Any executable names that are encountered in the logs 

that do not match any of the known applications are stored 
and usage accumulated against them. The report then lists 
any of these unknown executables that have a large 
amount of time attributed to them so that they can be 
investigated and, hopefully, added to the list of described 
applications. 

Additional options to the analysis tool include allowing 
the reporting to be limited to a specific period, to a 
particular project or group of users, specifying a custom 
set of histogram bins, and producing the reports in CSV 
format for import into other software. By default, the tool 
also produces plots in PNG format for quick visual 
inspection of the data. 

The text reports submitted along with this paper 
provide examples of the output produced by the reporting 
tool. 
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