
Shared-‐Memory	  Programming	  with	  OpenMP	  

Exercise	  Notes	  

Getting	  started	  
 
Change directory to the /work file system, i.e. 
 
user@archer$ cd /work/y14/y14/guestXX/ 
 
Copy the tar file containing the code to your account and unpack it with the command 
 
tar -xvf OMP-exercises.tar 
 

Exercise	  1:	  HelloWorld	  
This is a simple exercise to introduce you to the compilation and execution of OpenMP programs. The 
example code can be found in */HelloWorld/  where the * represents the language of your choice, 
i.e. C , or F . 
 
Compile the code. Before running it, set the environment variable OMP_NUM_THREADS to a number n 
between 1 and 4 with the command: 
 
export OMP_NUM_THREADS=n 
 
When run, the code enters a parallel region at the !$OMP PARALLEL / #pragma omp parallel 
command. At this point n threads are spawned, and each thread executes the print command separately. 
The OMP_GET_THREAD_NUM() / omp_get_thread_num()  library routine returns a number 
(between 0 and n-1) which identifies each thread. 
 

Extra	  Exercise	  
Incorporate calls to omp_get_num_threads() into the code and print its value within and outside 
the parallel region. 
 

Exercise	  2:	  Area	  of	  the	  Mandelbrot	  Set	  
The aim of this exercise is to use the OpenMP directives learned so far and apply them to a real 
problem. It will demonstrate some of the issues that need to be taken into account when adapting serial 
code to a parallel version. 
 

The	  Mandelbrot	  Set	  
The Mandelbrot Set is the set of complex numbers c for which the iteration z = z2 + c  does not diverge, 
from the initial condition z = c . To determine (approximately) whether a point c lies in the set, a finite 
number of iterations are performed, and if the condition |z| > 2 is satisfied then the point is considered 
to be outside the Set. What we are interested in is calculating the area of the Mandelbrot Set. There is 
no known theoretical value for this, and estimates are based on a procedure similar to that used here. 
 

The	  Code	  
The method we shall use generates a grid of points in a box of the complex plane containing the upper 
half of the (symmetric) Mandelbrot Set. Then each point is iterated using the equation above a finite 
number of times (say 2000). If within that number of iterations the threshold condition |z| > 2 is 



satisfied then that point is considered to be outside of the Mandelbrot Set. Then counting the number of 
points within the Set and those outside will give an estimate of the area of the Set. 
 
Parallelise the serial code using the OpenMP directives and library routines that you have learned so 
far. 
 
The method for doing this is as follows: 
 

1. Start a parallel region before the main loop, nest making sure that any private, shared or 
reduction variables within the region are correctly declared. 

2. Distribute the outermost loop across the threads available so that each thread has an equal 
number of the points. For this you will need to use some of the OpenMP library routines. 
 

Once you have written the code try it out using 1, 2, 3 and 4 threads. Check that the results are identical 
in each case, and compare the time taken for the calculations using the different number of threads. 
Note: to get accurate times, submit a batch job: see the Appendix for how to do this. 
 

Extra	  Exercise	  
Try different ways of mapping iterations to threads. 
 

Exercise	  3:	  Mandelbrot	  again	  
You can start from the code you have already, or another copy of the sequential code which can be 
found in */Mandelbrot2/. This time parallelise the outer loop using a PARALLEL DO / 
parallel for directive. Don’t forget to declare the shared, private and reduction variables. Add a 
SCHEDULE  clause and experiment with the different schedule kinds. 
 

Exercise	  4:	  Traffic	  Modelling	  
The following exercises, 5 and 6, use a molecular dynamics simulation to illustrate various aspects of 
OpenMP. If you prefer tackling a simpler code, try parallelising the provided serial version of a traffic 
model. Things to do include: 
 

• Add timing to the code. 
• Parallelise the code that updates the road and the copy-back step, being careful how you 

classify the variables and arrays. 
• Parallelise the update using step using orphaned directives. 

 
Leave the initialisation step as a serial routine: parallelising random number generators is quite 
difficult! The advantage of this is that your code should produce exactly the same answer in serial and 
parallel. 
 

Exercise	  5:	  Molecular	  Dynamics	  
The aim of this exercise is to demonstrate how to use OpenMP synchronisation constructs to parallelise 
a molecular dynamics code. 
 

The	  Code	  
The code can be found in */MolDyn/ . The code is a molecular dynamics (MD) simulation of argon 
atoms in a box with periodic boundary conditions. The atoms are initially arranged as a face-centred 
cubic (fcc) lattice and then allowed to melt. The interaction of the particles is calculated using a 
Lennard-Jones potential. The main loop of the program is in the file main.c / main.f90 . Once 
the lattice has been generated and the forces and velocities initialised, the main loop begins. The 
following steps are undertaken in each iteration of this loop: 
 

1. The particles are moved based on their velocities, and the velocities are partially updated (call 
to domove() ) 



2. The forces on the particles in their new positions are calculated and the virial and potential 
energies accumulated (call to forces() ) 

3. The forces are scaled, the velocity update is completed and the kinetic energy calculated (call 
to mkekin() ) 

4. The average particle velocity is calculated and the temperature scaled (call to velavg() ) 
5. The full potential and virial energies are calculated and printed out (call to prnout() ) 
 

Parallelisation	  
The parallelisation of this code is a little less straightforward. There are several dependencies within 
the program that will require use of critical or atomic constructs as well as the reduction 
clause. The instructions for parallelising the code are as follows: 
 

1. Edit the subroutine/function in forces.c / forces.f90. Start a !$OMP PARALLEL DO 
/#pragma omp parallel for  for the outer loop in this subroutine, identifying any 
private or reduction variables. Hint: There are 2 reduction variables. 

2. Identify the variable within the loop which must be updated atomically and use !$OMP 
CRITICAL / #pragma omp critical  to ensure this is the case. 

 
Once this is done the code should be ready to run in parallel. Compare the output using 2, 3 and 4 
threads with the serial output to check that it is working. Try adding a schedule (static, n) 
clause to the parallel loop for different values of n . Does this have any effect on performance? Also try 
using atomic constructs instead of criticals. 
 

Exercise	  6:	  Molecular	  Dynamics	  Part	  II	  
Following on from the previous exercise, we shall update the molecular dynamics code to take 
advantage of orphaning and examine the performance issues of using the critical construct. You can 
either work with the version you have already written, or start from the version in */MolDyn2 . 
 

Orphaning	  
You can change the PARALLEL DO / parallel for  directive to a DO / for directive and start 
the parallel region outside the call to forces() in in main.c / main.f90. Make sure that any 
reduction variables updated in the parallel region, but outside of the DO / for construct, are updated 
by one thread only. As before, check your code is still working correctly. Is there any difference in 
performance compared with the code without orphaning? 
 

Extra	  exercise	  	  
In Fortran, you can use a reduction clause for f instead of critical/atomic. In C, you can achieve the 
same effect by using a shared temporary array with an extra dimension, indexed by the thread number, 
to accumulate partial forces on each thread, and then sum these into f afterwards. Compare the 
performance with the versions using critical or atomics. 
 

Exercise	  7:	  Mandelbrot	  with	  tasks	  
Redo the Mandelbrot exercise using OpenMP tasks. To begin with, make the computation of each 
point a task, and use one thread only to generate the tasks. Once this is working, measure the 
performance. Note that reduction variables cannot be used inside tasks. 
 
Now modify your code so that it treats each row of points as a task. Modify your code again, so that all 
threads generate tasks. Which version performs best? Is the performance better or worse than using a 
loop directive? 
 



Appendix:	  OpenMP	  on	  ARCHER	  
 

Compiling	  using	  OpenMP	  
The OpenMP compilers we use are the Cray compilers for Fortran 90 and C, both of which have 
OpenMP enabled by default. To compile an OpenMP code, simply: 
 
Fortran (ftn): ftn -o program program.f90 
 C (cc): cc -o program program.c 
 

Job	  Submission	  
Batch processing is important, as it is the only way of accessing the main compute nodes. For doing 
timing runs you must use these. To do this, you should submit a batch job as follows, for example 
using 4 threads to run an executable called program: 
 
You will find a generic batch script in the HelloWorld directory called ompbatch.pbs 
 
cp ompbatch.pbs program.pbs 
 
Edit the export OMP_NUM_THREADS=  line in program.pbs to specify the number of threads to 
use.  
 
Submit the batch job using:  
 
qsub -q Rnnnnnnn program.pbs 
 
where Rnnnnnnn is the name of today’s special reserved queue for the course, which the instructor 
will give you.  
 
You can monitor your jobs status with the command qstat -u $USER 
 
When the job has finished, you will find two new files in the directory you submitted the job from, 
containing the output and error massages (if any).  


