
Shared-‐Memory	 Programming	 with	 OpenMP	

Exercise	 Notes	

Getting	 started	

Change directory to the /work file system, i.e.

user@archer$ cd /work/y14/y14/guestXX/

Copy the tar file containing the code to your account and unpack it with the command

tar -xvf OMP-exercises.tar

Exercise	 1:	 HelloWorld	
This is a simple exercise to introduce you to the compilation and execution of OpenMP programs. The
example code can be found in */HelloWorld/ where the * represents the language of your choice,
i.e. C , or F .

Compile the code. Before running it, set the environment variable OMP_NUM_THREADS to a number n
between 1 and 4 with the command:

export OMP_NUM_THREADS=n

When run, the code enters a parallel region at the !$OMP PARALLEL / #pragma omp parallel
command. At this point n threads are spawned, and each thread executes the print command separately.
The OMP_GET_THREAD_NUM() / omp_get_thread_num() library routine returns a number
(between 0 and n-1) which identifies each thread.

Extra	 Exercise	
Incorporate calls to omp_get_num_threads() into the code and print its value within and outside
the parallel region.

Exercise	 2:	 Area	 of	 the	 Mandelbrot	 Set	
The aim of this exercise is to use the OpenMP directives learned so far and apply them to a real
problem. It will demonstrate some of the issues that need to be taken into account when adapting serial
code to a parallel version.

The	 Mandelbrot	 Set	
The Mandelbrot Set is the set of complex numbers c for which the iteration z = z2 + c does not diverge,
from the initial condition z = c . To determine (approximately) whether a point c lies in the set, a finite
number of iterations are performed, and if the condition |z| > 2 is satisfied then the point is considered
to be outside the Set. What we are interested in is calculating the area of the Mandelbrot Set. There is
no known theoretical value for this, and estimates are based on a procedure similar to that used here.

The	 Code	
The method we shall use generates a grid of points in a box of the complex plane containing the upper
half of the (symmetric) Mandelbrot Set. Then each point is iterated using the equation above a finite
number of times (say 2000). If within that number of iterations the threshold condition |z| > 2 is

satisfied then that point is considered to be outside of the Mandelbrot Set. Then counting the number of
points within the Set and those outside will give an estimate of the area of the Set.

Parallelise the serial code using the OpenMP directives and library routines that you have learned so
far.

The method for doing this is as follows:

1. Start a parallel region before the main loop, nest making sure that any private, shared or
reduction variables within the region are correctly declared.

2. Distribute the outermost loop across the threads available so that each thread has an equal
number of the points. For this you will need to use some of the OpenMP library routines.

Once you have written the code try it out using 1, 2, 3 and 4 threads. Check that the results are identical
in each case, and compare the time taken for the calculations using the different number of threads.
Note: to get accurate times, submit a batch job: see the Appendix for how to do this.

Extra	 Exercise	
Try different ways of mapping iterations to threads.

Exercise	 3:	 Mandelbrot	 again	
You can start from the code you have already, or another copy of the sequential code which can be
found in */Mandelbrot2/. This time parallelise the outer loop using a PARALLEL DO /
parallel for directive. Don’t forget to declare the shared, private and reduction variables. Add a
SCHEDULE clause and experiment with the different schedule kinds.

Exercise	 4:	 Traffic	 Modelling	
The following exercises, 5 and 6, use a molecular dynamics simulation to illustrate various aspects of
OpenMP. If you prefer tackling a simpler code, try parallelising the provided serial version of a traffic
model. Things to do include:

• Add timing to the code.
• Parallelise the code that updates the road and the copy-back step, being careful how you

classify the variables and arrays.
• Parallelise the update using step using orphaned directives.

Leave the initialisation step as a serial routine: parallelising random number generators is quite
difficult! The advantage of this is that your code should produce exactly the same answer in serial and
parallel.

Exercise	 5:	 Molecular	 Dynamics	
The aim of this exercise is to demonstrate how to use OpenMP synchronisation constructs to parallelise
a molecular dynamics code.

The	 Code	
The code can be found in */MolDyn/ . The code is a molecular dynamics (MD) simulation of argon
atoms in a box with periodic boundary conditions. The atoms are initially arranged as a face-centred
cubic (fcc) lattice and then allowed to melt. The interaction of the particles is calculated using a
Lennard-Jones potential. The main loop of the program is in the file main.c / main.f90 . Once
the lattice has been generated and the forces and velocities initialised, the main loop begins. The
following steps are undertaken in each iteration of this loop:

1. The particles are moved based on their velocities, and the velocities are partially updated (call
to domove())

2. The forces on the particles in their new positions are calculated and the virial and potential
energies accumulated (call to forces())

3. The forces are scaled, the velocity update is completed and the kinetic energy calculated (call
to mkekin())

4. The average particle velocity is calculated and the temperature scaled (call to velavg())
5. The full potential and virial energies are calculated and printed out (call to prnout())

Parallelisation	
The parallelisation of this code is a little less straightforward. There are several dependencies within
the program that will require use of critical or atomic constructs as well as the reduction
clause. The instructions for parallelising the code are as follows:

1. Edit the subroutine/function in forces.c / forces.f90. Start a !$OMP PARALLEL DO
/#pragma omp parallel for for the outer loop in this subroutine, identifying any
private or reduction variables. Hint: There are 2 reduction variables.

2. Identify the variable within the loop which must be updated atomically and use !$OMP
CRITICAL / #pragma omp critical to ensure this is the case.

Once this is done the code should be ready to run in parallel. Compare the output using 2, 3 and 4
threads with the serial output to check that it is working. Try adding a schedule (static, n)
clause to the parallel loop for different values of n . Does this have any effect on performance? Also try
using atomic constructs instead of criticals.

Exercise	 6:	 Molecular	 Dynamics	 Part	 II	
Following on from the previous exercise, we shall update the molecular dynamics code to take
advantage of orphaning and examine the performance issues of using the critical construct. You can
either work with the version you have already written, or start from the version in */MolDyn2 .

Orphaning	
You can change the PARALLEL DO / parallel for directive to a DO / for directive and start
the parallel region outside the call to forces() in in main.c / main.f90. Make sure that any
reduction variables updated in the parallel region, but outside of the DO / for construct, are updated
by one thread only. As before, check your code is still working correctly. Is there any difference in
performance compared with the code without orphaning?

Extra	 exercise	 	
In Fortran, you can use a reduction clause for f instead of critical/atomic. In C, you can achieve the
same effect by using a shared temporary array with an extra dimension, indexed by the thread number,
to accumulate partial forces on each thread, and then sum these into f afterwards. Compare the
performance with the versions using critical or atomics.

Exercise	 7:	 Mandelbrot	 with	 tasks	
Redo the Mandelbrot exercise using OpenMP tasks. To begin with, make the computation of each
point a task, and use one thread only to generate the tasks. Once this is working, measure the
performance. Note that reduction variables cannot be used inside tasks.

Now modify your code so that it treats each row of points as a task. Modify your code again, so that all
threads generate tasks. Which version performs best? Is the performance better or worse than using a
loop directive?

Appendix:	 OpenMP	 on	 ARCHER	

Compiling	 using	 OpenMP	
The OpenMP compilers we use are the Cray compilers for Fortran 90 and C, both of which have
OpenMP enabled by default. To compile an OpenMP code, simply:

Fortran (ftn): ftn -o program program.f90
 C (cc): cc -o program program.c

Job	 Submission	
Batch processing is important, as it is the only way of accessing the main compute nodes. For doing
timing runs you must use these. To do this, you should submit a batch job as follows, for example
using 4 threads to run an executable called program:

You will find a generic batch script in the HelloWorld directory called ompbatch.pbs

cp ompbatch.pbs program.pbs

Edit the export OMP_NUM_THREADS= line in program.pbs to specify the number of threads to
use.

Submit the batch job using:

qsub -q Rnnnnnnn program.pbs

where Rnnnnnnn is the name of today’s special reserved queue for the course, which the instructor
will give you.

You can monitor your jobs status with the command qstat -u $USER

When the job has finished, you will find two new files in the directory you submitted the job from,
containing the output and error massages (if any).

