

Threaded
Programming

Lecture 6: Further topics in OpenMP

Overview

•  Nested parallelism

•  Orphaned constructs

•  Thread-private globals

•  Timing routines

2

3

Nested parallelism

•  Nested parallelism is supported in OpenMP.

•  If a PARALLEL directive is encountered within another PARALLEL
directive, a new team of threads will be created.

•  This is enabled with the OMP_NESTED environment variable or the
OMP_SET_NESTED routine.

•  If nested parallelism is disabled, the code will still executed, but the
inner teams will contain only one thread.

4

Nested parallelism (cont)

Example:
!$OMP PARALLEL PRIVATE(myid)
myid = omp_get_thread_num()
if (myid .eq. 0) then
!$OMP PARALLEL DO
 do i = 1,n
 x(i) = 1.0
 end do
elseif (myid .eq.1) then
!$OMP PARALLEL DO
 do j = 1,n
 y(j) = 2.0
 end do
endif

!$OMP END PARALLEL

5

Nested parallelism (cont)

•  Not often needed, but can be useful to exploit non-scalable
parallelism

•  Also useful if the outer level does not contain enough
parallelism

•  Note: nested parallelism isn’t supported in some
implementations (the code will execute, but as if
OMP_NESTED is set to FALSE).
–  turns out to be hard to do correctly without impacting performance

significantly.
–  don’t enable nested parallelism unless you are using it!

Controlling the number of threads

•  Can use the environment variable

export OMP_NUM_THREADS=2,4

•  Will use 2 threads at the outer level and 4 threads for each of
the inner teams.

•  Can use omp_set_num_threads() or the num_threads
clause on the parallel region.

6

7

omp_set_num_threads()

•  Useful if you want inner regions to use different numbers of threads:

CALL OMP_SET_NUM_THREADS(2)
!$OMP PARALLEL DO
 DO I = 1,4
CALL OMP_SET_NUM_THREADS(innerthreads(i))
!$OMP PARALLEL DO
 DO J = 1,N
 A(I,J) = B(I,J)
 END DO
 END DO

•  The value set overrides the value(s) in the environment variable

OMP_NUM_THREADS

8

NUM_THREADS clause

•  One way to control the number of threads used at each level is with the
NUM_THREADS clause:

!$OMP PARALLEL DO NUM_THREADS(2)
 DO I = 1,4
!$OMP PARALLEL DO NUM_THREADS(innerthreads(i))
 DO J = 1,N
 A(I,J) = B(I,J)
 END DO
 END DO

•  The value set in the clause overrides the value in the environment

variable OMP_NUM_THREADS and that set by
omp_set_num_threads()

More control….

•  Can also control the maximum number of threads running at
any one time.

export OMP_THREAD_LIMIT=64

•  …and the maximum depth of nesting

export OMP_MAX_ACTIVE_LEVELS=2

or call

 omp_set_max_active_levels()

9

Utility routines for nested parallelism

•  omp_get_level()
–  returns the level of parallelism of the calling thread
–  returns 0 in the sequential part

•  omp_get_active_level()
–  returns the level of parallelism of the calling thread, ignoring

levels which are inactive (teams only contain one thread)

•  omp_get_ancestor_thread_num(level)
–  returns the thread ID of this thread’s ancestor at a given level
–  ID of my parent:
omp_get_ancestor_thread_num(omp_get_level()-1)

•  omp_get_team_size(level)
–  returns the number of threads in this thread’s ancestor team at a

given level

10

11

Nested loops

•  For perfectly nested rectangular loops we can parallelise multiple loops
in the nest with the collapse clause:

•  Argument is number of loops to collapse starting from the outside

•  Will form a single loop of length NxM and then parallelise and schedule
that.

•  Useful if N is O(no. of threads) so parallelising the outer loop may not
have good load balance

•  More efficient than using nested teams

#pragma omp parallel for collapse(2)
for (int i=0; i<N; i++) {
 for (int j=0; j<M; j++) {

 }
}

Synchronisation in nested parallelism

•  Note that barriers (explicit or implicit) only affect the
innermost enclosing parallel region.

•  No way to have a barrier across multiple teams

•  In contrast, critical regions, atomics and locks affect all the
threads in the program

•  If you want mutual exclusion within teams but not between
them, need to use locks (or atomics).

12

13

Orphaned directives

•  Directives are active in the dynamic scope of a parallel region, not

just its lexical scope.

•  Example:
!$OMP PARALLEL

 call fred()

!$OMP END PARALLEL

 subroutine fred()

!$OMP DO

 do i = 1,n

 a(i) = a(i) + 23.5

 end do

 return

 end

14

Orphaned directives (cont)

•  This is very useful, as it allows a modular programming style….

•  But it can also be rather confusing if the call tree is complicated (what
happens if fred is also called from outside a parallel region?)

•  There are some extra rules about data scope attributes….

15

Data scoping rules

When we call a subroutine from inside a parallel region:

•  Variables in the argument list inherit their data scope attribute from the
calling routine.

•  Global variables in C++ and COMMON blocks or module variables in
Fortran are shared, unless declared THREADPRIVATE (see later).

•  static local variables in C/C++ and SAVE variables in Fortran are
shared.

•  All other local variables are private.

16

Thread private global variables

•  It can be convenient for each thread to have its own copy of variables
with global scope (e.g. COMMON blocks and module data in Fortran, or

file-scope and namespace-scope variables in C/C++).

•  Outside parallel regions and in MASTER directives, accesses to these
variables refer to the master thread’s copy.

17

Thread private globals (cont)

Syntax:
Fortran: !$OMP THREADPRIVATE (list)
 where list contains named common blocks (enclosed in slashes), module

variables and SAVEd variables..
 This directive must come after all the declarations for the common blocks

or variables.

C/C++: #pragma omp threadprivate (list)
 This directive must be at file or namespace scope, after all declarations

of variables in list and before any references to variables in list. See
standard document for other restrictions.

 The COPYIN clause allows the values of the master thread’s

THREADPRIVATE data to be copied to all other threads at the start of a
parallel region.

18

Timing routines

OpenMP supports a portable timer:

–  return current wall clock time (relative to arbitrary origin) with:

 DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

 double omp_get_wtime(void);

–  return clock precision with

 DOUBLE PRECISION FUNCTION OMP_GET_WTICK()

 double omp_get_wtick(void);

19

Using timers

DOUBLE PRECISION STARTTIME, TIME

STARTTIME = OMP_GET_WTIME()

......(work to be timed)

TIME = OMP_GET_WTIME()- STARTTIME

Note: timers are local to a thread: must make both calls on the same thread.

Also note: no guarantees about resolution!

20

Exercise

Molecular dynamics again

•  Aim: use of orphaned directives.

•  Modify the molecular dynamics code so by placing a parallel region
directive around the iteration loop in the main program, and making all
code within this sequential except for the forces loop.

•  Modify the code further so that each thread accumulates the forces into a
local copy of the force array, and reduce these copies into the main array
at the end of the loop.

