
MPI-2 single-sided communication on ARCHER

September 6, 2017

1 Introduction

The purpose of this exercise is to investigate the single-sided functionality of MPI-2. You will start with
a working MPI parallelised image processing code and replace the point-to-point functions for halo-
exchange with MPI-2 single-sided operations.

2 FENCE and PUT

Your first single-sided version will use MPI_WIN_FENCE for synchronisation and MPI_PUT for data
movement.

• first, add window creation and tidy-up function calls,
use MPI_WIN_CREATE to create a window
and MPI_WIN_FREE to destroy the window.
Test your program still works and gets the right answer.

• next, add synchronisation function calls,
use MPI_WIN_FENCE before your main loop
and MPI_WIN_FENCE inside your main loop.
Test your program still works and gets the right answer.

• finally replace the non-blocking point-to-point function calls with MPI_PUT function calls.
Remember to remove the calls to MPI_WAIT or MPI_WAIT_ALL.
Test your program still works and gets the right answer.

Now, for various numbers of processes, benchmark your new single-sided program with images of dif-
ferent sizes.

Is your new code faster or slower than the point-to-point version you started with?
Does your new code strong-scale (same input image, more processes) well or badly?
Does your new code weak-scale (bigger input image, more processes) well or badly?

1



3 FENCE and GET

Make a new version of your image-processing code that uses MPI_GET instead of MPI_PUT. You should
be able to re-use the window creation, synchronisation using MPI_WIN_FENCE, and tidy-up code with-
out any changes.

Is this new code faster or slower than the version using MPI_PUT?
Does your new code strong-scale (same input image, more processes) well or badly?
Does your new code weak-scale (bigger input image, more processes) well or badly?

2


