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Shared Memory
• Easy to solve in shared memory

• imagine a shared array called x

begin serial region

open the file

write x to the file

close the file

end serial region

• Simple as every thread can access shared data
• may not be efficient but it works

• But what about distributed memory?



I/O Strategies

• Basic one file for a program

• Works fine for serial

• Most codes use this initially

• Works for shared memory parallelism

• Distributed memory

• Data now not in single memory space

• Master I/O 

• Use communication to get and send all data from one process

• High overhead

• Use single file

• Memory issues, no access to I/O resources at scale



I/O Strategies cont.

• Individual files
• Each process writes own file (either on shared filesystem or 

local scratch space)

• Use as much of I/O system as possible

• file contents dependent on number of CPUs and 
decomposition

• pre / post-processing steps needed to change number of 
processes

• Filesystem breaks down for large numbers of processors

• File handles or number of files a problem

• Look to better solution
• I/O libraries
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I/O options
• I/O to single file

• Everyone involved in I/O

• Processes write their own data

• I/O Server/I/O Writers

• Subset of processes do I/O

• Choice depends on scale and operations to be done and 
filesystem characteristics

• All I/O
• Good up to reasonable scale for standard parallel filesystems 

(10,000s processes)

• Sub I/O 
• Good for very large scale applications or where processing of 

data is required

• Enables collection of data and in-situ analytica



Files vs Arrays

• Think of the file as a large array
• forget that I/O actually goes to disk

• imagine we are recreating a single large array on a master process

• The I/O system must create this array and save to disk
• without running out of memory

• never actually creating the entire array

• ie without doing naive master I/O

• and by doing a small number of large I/O operations

• merge data to write large contiguous sections at a time

• utilising any parallel features

• doing multiple simultaneous writes if there are multiple I/O nodes

• managing any coherency issues re file blocks



MPI-I/O

• Aim to provide distributed access to single file

• File shared

• Control by programmer

• Look like a serial program has written the data

• Part of MPI-2 standard

• http://www.mpi-forum.org/docs/docs.html

• Typically available in modern MPI libraries, but if not can use ROMIO (MPI-

IO built on MPI-1 calls)

• Performance dependent on implementation

• Built on MPI collective operations

• Data structure defined by programmer



MPI-I/O cont.

• Array based I/O
• Each process creates description of subset it holds (derived 

datatype)

• No checking of correctness

• Library handles read and write to files
• Don’t ever have all in memory

• Everything done with MPI calls

• Scale as well as MPI communications

• Best performance for big reads/writes

• Info object for passing system specific information
• Lots of optimisations, tweaking, etc…



Basic Datatypes
• MPI has a number of pre-defined datatypes

• eg MPI_INT / MPI_INTEGER, MPI_FLOAT / MPI_REAL

• user passes them to send and receive operations

• For example, to send 4 integers from an array x

C: int[10];

F: INTEGER x(10)

MPI_Send(x, 4, MPI_INT, ...);

MPI_SEND(x, 4, MPI_INTEGER, ...)



Simple Example
• Contiguous type

MPI Datatype my_new_type;

MPI_Type_contiguous(count=4, oldtype=MPI_INT, newtype=&my_new_type);

MPI_Type_commit(&my_new_type);

INTEGER MY_NEW_TYPE

CALL MPI_TYPE_CONTIGUOUS(4, MPI_INTEGER, MY_NEW_TYPE, IERROR)

CALL MPI_TYPE_COMMIT(MY_NEW_TYPE, IERROR)

MPI_Send(x, 1, my_new_type, ...);

MPI_SEND(x, 1, MY_NEW_TYPE, ...)

• Vector types correspond to patterns such as



Array Subsections in Memory

C: x[5][4]

F: x(5,4)



Equivalent Vector Datatypes

stride = 4

blocklength = 2
count = 3

stride = 5

blocklength = 3
count = 2



Definition in MPI
MPI_Type_vector(int count, int blocklength, int stride,        

MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE,                   
OLDTYPE, NEWTYPE, IERR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE

INTEGER NEWTYPE, IERR

MPI_Datatype vector3x2;

MPI_Type_vector(3, 2, 4, MPI_FLOAT, &vector3x2)

MPI_Type_commit(&vector3x2)

integer vector3x2

call MPI_TYPE_VECTOR(2, 3, 5, MPI_REAL, vector3x2, ierr)

call MPI_TYPE_COMMIT(vector3x2, ierr)



Datatypes as Floating Templates



MPI-IO vs Master IO

• Can use MPI-I/O derived types to do master I/O

• Used them to do multiple sends from a master

• This requires a buffer to hold entire file on master

• not scalable to many processes due to memory limits

• MPI-I/O model

• each process defines the datatype for its section of the file

• these are passed into the MPI-I/O routines

• data is automatically read and transferred directly to local memory

• there is no single large buffer and no explicit master process



MPI-I/O Approach

• Four stages
• open file

• set file view

• read or write data

• close file

• All the complexity is hidden in setting the file view
• this is where the derived datatypes appear

• Write is probably more important in practice than read
• but exercises concentrate on read

• makes for an easier progression from serial to parallel I/O examples



Opening a File
MPI_File_open(MPI_Comm comm, char *filename, int amode,

MPI_Info info, MPI_File *fh)

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERR

• Attaches a file to the File Handle
• use this handle in all future IO calls
• analogous to C file pointer or Fortran unit number

• Routine is collective across the communicator
• must be called by all processes in that communicator

• Access mode specified by amode
• common values are: MPI_MODE_CREATE,  MPI_MODE_RDONLY, 
MPI_MODE_WRONLY,  MPI_MODE_RDWR



Examples
MPI_File fh;

int amode = MPI_MODE_RDONLY;

MPI_File_open(MPI_COMM_WORLD, “data.in”, amode,

MPI_INFO_NULL, &fh);

integer fh

integer amode = MPI_MODE_RDONLY

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘data.in’, amode,

MPI_INFO_NULL, fh, ierr)

• Must specify create as well as write for new files

int amode = MPI_MODE_CREATE | MPI_MODE_WRONLY;

integer amode = MPI_MODE_CREATE + MPI_MODE_WRONLY



Closing a File

MPI_File_close(MPI_File *fh)

MPI_FILE_CLOSE(FH, IERR)

INTEGER FH, IERR

• Routine is collective across the communicator

• must be called by all processes in that communicator



Reading Data
MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERR)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERR

• Reads count objects of type datatype from the file on each process

• this is collective across the communicator associated with fh

• similar in operation to C fread or Fortran read

• No offsets into the file are specified in the read

• but processes do not all read the same data!

• actual positions of read depends on the process’s own file view

• Similar syntax for write



Setting the File View
int MPI_File_set_view(MPI_File fh, MPI_Offset disp,

MPI_Datatype etype, MPI_Datatype filetype,

char *datarep, MPI_Info info);

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, 

IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

• disp specifies the starting point in the file in bytes

• etype specifies the elementary datatype which is the building block of the file

• filetype specifies which subsections of the global file each process 

accesses

• datarep specifies the format of the data in the file

• info contains hints and system-specific information



File Views
• Once set, the process only sees the data in the view

• data starts at different positions in the file depending on the displacement and/or 

leading gaps in fixed datatype

• can then do linear reads – holes in datatype are skipped over
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Data Representation

• datarep is a string that can be
• “native”

• “internal”

• “external32”

• Fastest is “native”
• raw bytes are written to file exactly as in memory

• Most portable is “external32”
• should be readable by MPI-IO on any platform

• Middle ground is “internal”
• portability depends on the implementation

• Recommend “native”
• convert file format by hand as and when necessary



Choice of Parameters (1)
• Many different combinations are possible

• choices of displacements, filetypes, etypes, datatypes, ...

• Simplest approach is to set disp = 0 everywhere

• then specify offsets into files using fixed datatypes when setting view
• non-zero disp could be useful for skipping global header (eg metadata)

• disp must be of the correct type in Fortran (NOT a default integer)

• CANNOT specify ‘0’ for the displacement: need to use a variable

INTEGER(KIND=MPI_OFFSET_KIND) DISP = 0

CALL MPI_FILE_SET_VIEW(FH, DISP, ...)

• Recommend setting the view with fixed datatypes

• and zero displacements



Choice of Parameters (2)

• Can also use floating datatypes in the view

• each process then specifies a different, non-zero value of disp

• Problems
• disp is specified in bytes so need to know the size of the etype

• files are linear 1D arrays

• need to do a calculation for displacement of element of 2D array

• something like i*NY + j (in C) or  j*NX + i (in Fortran)

• then multiply by the number of bytes in a float or REAL

• etype is normally something like MPI_REAL or 

MPI_FLOAT

• datatype in read/write calls is usually the same as the etype



Collective I/O
• For read and write, “_all” means operation is collective

• all processes attached to the file are taking part

• Other I/O routines exist which are individual (delete “_all”)

• functionality is the same but performance will be slower

• collective routines can aggregate reads/writes for better performance

Combine ranks 0 and 1 for single 
contiguous read/write to file

Combine ranks 2 and 3 for single 
contiguous read/write to file



Other individual operations

• Alternative approach
• let everyone see the whole file (i.e. do not set a view)

• manually seek to correct location using, e.g., 
MPI_File_write_at()

• displacement is in units of the extent of the datatype

• Disadvantages
• a very low-level, manual approach less amenable to I/O 

optimisation

• danger that each request is handled individually with no 
aggregation

• can use MPI_File_write_at_all() but might still be slow



INFO Objects and Performance

• Used to pass optimisation hints to MPI-I/O

• implementations can define any number of allowed values

• these are portable in as much as they can be ignored!

• can use the default value info = MPI_INFO_NULL

• Info objects can be created, set and freed

• MPI_Info_create

• MPI_Info_set

• MPI_Info_free

• see man pages for details

• Using appropriate values may be key to performance

• e.g. setting buffer sizes, blocking factors, number of IO nodes, ...

• but is dependent on the system and the MPI implementation

• need to consult the MPI manual for your machine

• on ARCHER, easier to tune Lustre file system than use MPI-I/O hints



Non-blocking I/O in MPI-I/O
• Two forms

• General non-blocking

• MPI_File_iwrite(fh, buf, count, datatype, request) 

• finish by waiting on request

• but no collective version

• Split collective

• MPI_File_write_all_begin(fh, buf, count, datatype)

• MPI_File_write_all_end(fh, buf, status)

• only a single outstanding I/O operation at any one time

• allows for collective version



MPI-I/O

• MPI-I/O calls deceptively simple

• User must define appropriate filetypes so file view is 

correct on each process

• this is the difficult part!

• Use collective calls whenever you can

• enables I/O library to merge reads and writes

• enables a smaller number of larger I/O operations from/to disk


