
David Henty Dan Holmes

EPCC, University of Edinburgh

MPI 3.0

Neighbourhood

Collectives
Advanced Parallel Programming

Overview

• Review of topologies in MPI

• MPI 3.0 includes new neighbourhood collective operations:

– MPI_Neighbor_allgather[v]

– MPI_Neighbor_alltoall[v|w]

• Example usage:

– Halo-exchange can be done with a single MPI communication call

• Practical tomorrow:

– Replace all point-to-point halo-exchange communication with a single

neighbourhood collective in your MPP coursework code

Topology communicators (review 1)

• Regular n-dimensional grid or torus topology

– MPI_CART_CREATE

• General graph topology

– MPI_GRAPH_CREATE

– All processes specify all edges in the graph (not scalable)

• General graph topology (distributed version)

– MPI_DIST_GRAPH_CREATE_ADJACENT

– All processes specify their incoming and outgoing neighbours

– MPI_DIST_GRAPH_CREATE

– Any process can specify any edge in the graph (too general?)

Topology communicators (review 2)

• Testing the topology type associated with a communicator

– MPI_TOPO_TEST

• Finding the neighbours for a process

– MPI_CART_SHIFT

– Find out how many neighbours there are:

– MPI_GRAPH_NEIGHBORS_COUNT

– Get the ranks of all neighbours:

– MPI_GRAPH_NEIGHBORS

– Find out how many neighbours there are:

– MPI_DIST_GRAPH_NEIGHBORS_COUNT

– Get the ranks of all neighbours:

– MPI_DIST_GRAPH_NEIGHBORS

Neighbourhood collective operations

• See section 7.6 in MPI 3.0 for blocking functions

– See section 7.7 in MPI 3.0 for non-blocking functions

– See section 7.8 in MPI 3.0 for an example application

– But beware of the mistake(s) in the example code!

• MPI_[N|In]eighbor_allgather[v]

– Send one piece of data to all neighbours

– Gather one piece of data from each neighbour

• MPI_[N|In]eighbor_alltoall[v|w]

– Send different data to each neighbour

– Receive different data from each neighbour

• Use-case: regular or irregular domain decomposition codes

– Where the decomposition is static or changes infrequently

– Because creating a topology communicator takes time

MPI_Neighbor_allgather

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype

sendcount

recvbuf

recvtype

recvcount

• Same send buffer
for each outgoing
neighbour

• Contiguous chunks
in receive buffer
from each incoming
neighbour

http://www.epcc.ed.ac.uk/

MPI_Neighbor_allgatherv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour

To 2nd neighbour

To 3rd neighbour

sendbuf
sendtype

sendcount

recvbuf

recvtype

displs[5]

recvcounts[5]

• Same send buffer
for each outgoing
neighbour

• Non-contiguous
variable-sized
chunks in receive
buffer from each
incoming neighbour

http://www.epcc.ed.ac.uk/

MPI_Neighbor_alltoall

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf
sendtype

sendcount

recvbuf

recvtype

recvcount

• Contiguous chunks
in send buffer
for each outgoing
neighbour

• Contiguous chunks
in receive buffer
from each incoming
neighbour

http://www.epcc.ed.ac.uk/

MPI_Neighbor_alltoallv

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf

sendtype

sdispls[3]

sendcounts[3]

recvbuf

recvtype

rdispls[5]

recvcounts[5]

• Non-contiguous
variable-sized chunks
in send buffer
for each outgoing
neighbour

• Non-contiguous
variable-sized chunks
in receive buffer from
each incoming
neighbour

http://www.epcc.ed.ac.uk/

MPI_Neighbor_alltoallw

From 1st neighbour
From 2nd neighbour
From 3rd neighbour
From 4th neighbour
From 5th neighbour

To 1st neighbour
To 2nd neighbour
To 3rd neighbour

sendbuf

sendtypes[3]

sdispls[3]

sendcounts[3]

recvbuf

recvtypes[5]

rdispls[5]

recvcounts[5]

• Non-contiguous
variable-sized chunks
in send buffer
for each outgoing
neighbour

• Non-contiguous
variable-sized chunks
in receive buffer from
each incoming
neighbour

http://www.epcc.ed.ac.uk/

for (int i=0;i<4;++i) {
 sendcounts[i] = 1;
 recvcounts[i]=1; }

sendtypes[0] = contigType;

senddispls[0] = colLen*(rowLen+2)+1;

sendtypes[1] = contigType;

senddispls[1] = 1*(rowLen+2)+1;

sendtypes[2] = vectorType;

senddispls[2] = 1*(rowLen+2)+1;

sendtypes[3] = vectorType;

senddispls[3] = 2*(rowLen+2)-2;

// similarly for recvtypes and recvdispls

MPI_Neighbor_alltoallw

V
E
C
T
O
R

V
E
C
T
O
R

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS

CONTIGUOUS

sendbuf

MPI_Neighbor_alltoallw(sendbuf, sendcounts, senddispls, sendtypes,
 recvbuf, recvcounts, recvdsipls, recvtypes,
 comm);

V
E
C
T
O
R

V
E
C
T
O
R

recvbuf

rowLen

colLen

http://www.epcc.ed.ac.uk/

Summary

• Regular or irregular domain decomposition codes

– Where the decomposition is static or changes infrequently

• Should investigate replacing point-to-point communication

– E.g. halo-exchange communication

• With neighbourhood collective communication

– Probably MPI_Ineighbor_alltoallw

• So that MPI can optimise the whole pattern of messages

– Rather than trying to optimise each message individually

• And so your application code is simpler and easier to read

