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1 Introduction

The aim of these exercises is to investigate the way that parallel IO performance on ARCHER is affected
by a number of factors including:

• interaction with other users;

• the Lustre file system settings;

• the choice of MPI-IO, HDF5 or NetCDF;

• data aggregation within the Cray MPI-IO library.

Running the exercises should also give you some feeling for the kinds of IO rates achievable on ARCHER,
enabling you more easily to judge whether the IO phases of your own codes can or should be improved.

2 Test code

The test code is called benchio and is a simple Fortran program that performs parallel IO using exactly
the same MPI-IO routines covered in the first part of the course. The major differences between this code
and the one developed previously in the MPI-IO exercises are:

• the code writes data rather than reads it;

• it distributes a 3D array across a 3D process grid rather than being in 2D;

• serial (Fortran write) and parallel (MPI-IO, HDF5 and NetCDF) output are all implemented;

• all IO is timed and data transfer rates reported in MiB/s (one MiB is 10242 bytes).

3 Setup

Copy the file benchio.tar file from the ARCHER course web page to your workspace directory on
ARCHER (/work/y14/y14/guestXX/) and unpack it. As well as the source code, Makefile etc.
you should see three directories call unstriped, striped and defstriped. The code performs
serial and parallel IO to each of these directories in turn to investigate the impact of different Lustre
settings; note that the program removes each file immediately after it written to save disc space.

Before running the code, you should configure these Lustre directories as follows:

• remove the striping on unstriped by using lfs setstripe with a count of 1;

• set the striping on striped to the optimal (i.e. system-selected) striping by setting a count of -1;

• the defstriped directory should be left at its default settings for comparison.

Compile using make and submit the supplied batch script benchio.pbs to the reserved course queue.
As distributed, this selects 1 node (i.e. 24 cores) and runs the code once on 16 cores.
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Note that the program measures weak scaling, i.e. the array dimensions specified are those for the local
array. This is simply replicated across processes, and hence the total data size (i.e. the size of the file)
increases linearly with process count. The precise distribution of processes in the 3D grid is chosen
automatically at runtime. See the Appendix for a more complete description of the code.

4 Initial exercise

You should try and answer the follow questions:

1. How do the IO rates change as the number of processes is increased? How is this affected by the
choice of striping, or the use of serial or parallel IO? Can you explain this behaviour in terms of
the way that MPI-IO and Lustre are interacting with each other?

2. Run the code several times: how variable are the IO rates?

3. Run on 512 processes (i.e. 22 nodes): can you explain these IO rates compared to, for example, 16
or 64 processes?

4. Find out the actual numbers of stripes being used by Lustre for default and “optimal” striping by
issuing lfs_getstripe on a file in the appropriate directory. Note that files must have been
created after the Lustre settings on the directory were last changed. You can either create a test
file, or remove the fdelete calls in benchio so data files are not removed automatically.

5. Replace the collective MPI-IO call MPI_File_write_all in mpiio.f90 with the individual
call MPI_File_write and rerun the program. How do the parallel IO rates compare to those
previously observed?

5 Extra exercises

As explained in the lectures, good parallel IO performance requires that data is written simultaneously
to many IO devices and that this is done using a small number of large, contiguous IO transactions.
To achieve this, MPI-IO libraries attempt to aggregate data from multiple processes together into local
buffers before writing to file. The Cray implementation can report quite detailed statistics about its
internal operations which allow us to assess how successful its aggregation strategy is in practice.

1. In the PBS batch script, set the environment variable MPICH_MPIIO_STATS=1 to turn on MPI-
IO reporting. Re-run the parallel IO tests above and look at how these statistics vary depending on
the Lustre settings. Does the observed performance correlate with these statistics?

2. Repeat this study using collective rather than individual IO. Again, does observed performance
correlate with the statistics?

3. Change the code so that HDF5 and NetCDF also use non-collective IO (see the comments in the
appropriate files). Do you see the same behaviour as for MPI-IO?

Conclusions

Hopefully these exercises have illustrated that fast parallel IO requires all the IO layers to be operating
efficiently together: a single break in the chain can dramatically compromise the IO performance.

In particular, simply introducing MPI-IO into your code is not enough. Even having chosen the most
efficient routines, it may initially have no substantial impact on IO performance. However, having im-
plemented collective MPI-IO, adjusting the Lustre settings can then potentially increase performance by
more than an order of magnitude. Most crucially, the benefit now grows with the number of cores as
additional parallelism is utilised by both MPI-IO and Lustre.
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Appendix: Details of benchio code (from README file)

The code does IO from a very simple configuration: a large 3D array of
double-precision numbers distributed across a 3D grid of processes. It
is written in Fortran. It was originally written as an MPI function to
be called from a coarray code, then changed to pure MPI.

The *local* data size is specified by (n1, n2, n3). The process grid
(p1, p2, p3) is chosen using the standard MPI function
"MPI_Dims_create", with p1*p2*p3 = size, except that the order is
reversed as MPI usually assumes a C-like convention (tending to prefer
larger numbers of processes in the first dimension) whereas this code
is in Fortran. The global data array is of size (l1, l2, l3) where
l1=p1*n1 etc.

The local data arrays have halos on them to make it more realistic,
i.e. they are declared as:

double precision :: iodata(0:n1+1, 0:n2+1, 0:n3+1)

The data is written out in a decomposition-independent format, so
there is a substantial amount of data rearrangement required. It would
of course be easier to write out in processor order, i.e. all the data
from rank 0, then rank 1 etc., but this is not what we want to do in a
real program.

The array is initialised such that each non-halo element has a unique
value in the range [1, l1*l2*l3]. Entries are set according to their

*global* position so that, if the IO works correctly, the file should
contain the numbers 1.0, 2.0, 3.0, ..., l1*l2*l3 in order.

To do this, the subroutine "mpiiowrite" is called with the local
dimensions passed explicitly and the process decomposition described
by a cartesian communicator. The IO within "mpiiowrite" is quite
straightforward:

A subarray type called "filetype" is declared which describes which
(n1, n2, n3) subsection of the global (l1, l2, l3) array each process
owns; a process simply has to query its position in the cartesian
communicator. This is then used as the filetype in "MPI_File_open", at
which stage each process has defined what subsets of the global file
it is going to access. This info is stored in the file handle "fh".

A subarray type called "mpi_subarray" is declared to describe what
portion of the local data to write to the file. This is simply the
core (n1, n2, n3) section excluding the halos.

Once this simple setup is done, all that is needed is a single
collective call:

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr)

and *all* the hard work is done by MPI-IO.
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We can check the output using "od", e.g. to look at the double
precision entries in the file skipping the first million doubles
(i.e. 8 million bytes):

od -t fD -A d -j 8000000 striped/mpiio.dat | head
08000000 1000001 1000002
08000016 1000003 1000004
08000032 1000005 1000006
08000048 1000007 1000008
08000064 1000009 1000010
08000080 1000011 1000012
08000096 1000013 1000014
08000112 1000015 1000016
08000128 1000017 1000018
08000144 1000019 1000020

As expected, the entries are one million+1, million+2, ...

For the HDF5 and NetCDF files, you can examine them using:

h5dump hdf5.dat | less
ncdump netcdf.dat | less
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