Derived Datatypes

MPI Datatypes

- Basic types
- Derived types
 - vectors
 - structs
 - others

Basic datatypes

```
int x[10];
INTEGER:: x(10);
// send all 10 values
MPI Send(x, 10, MPI INT, ...);
MPI SEND(x, 10, MPI INTEGER, ...)
// send first 4 values
MPI Send(&x[0], 4, ...);
MPI SEND(x(1), 4, ...)
// send 5^{th}, 6^{th}, 7^{th}, 8^{th}
MPI_Send(&x[4], 4, ...);
MPI SEND(x(5), 4, ...)
// ??
struct mystruct x[10];
type (mytype) :: x(10)
```


Motivation

- Send / Recv calls need a datatype argument
 - pre-defined values exist for pre-defined language types
 - e.g. real <-> MPI_REAL; int <-> MPI_INT
- What about types defined by a program?
 - e.g. structures (in C) or user-defined types (Fortran)
- Send / Recv calls take a count parameter
 - what about data that isn't contiguous in memory?
 - e.g. subsections of 2D arrays

Approach

- Can define new types in MPI
 - user calls setup routines to describe new data type to MPI
 - remember, MPI is a library and NOT a compiler!
 - MPI returns a new data type handle
 - store this value in a variable, e.g. MPI MY NEWTYPE
- Derived types have same status as pre-defined
 - can use in any message-passing call
- Some care needed for reduction operations
 - user must also define a new MPI_Op appropriate to the new data type to tell MPI how to combine them

Defining types

- All derived types stored by MPI as a list of basic types and displacements (in bytes)
 - for a structure, types may be different
 - for an array subsection, types will be the same
- User can define new derived types in terms of both basic types and other derived types

Derived Data types - Type

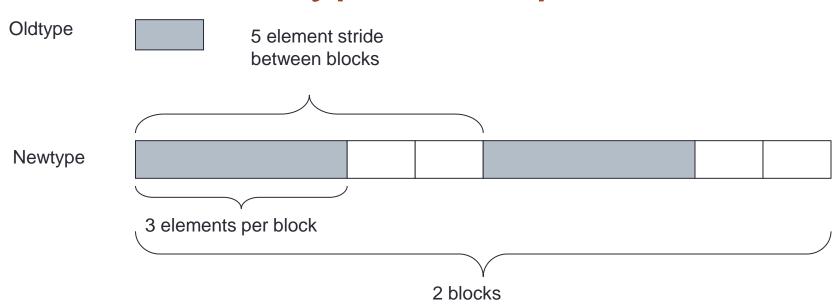
basic datatype 0	displacement of datatype 0	
basic datatype 1	displacement of datatype 1	
basic datatype n-1	displacement of datatype n-1	

Contiguous Data

- The simplest derived datatype consists of a number of contiguous items of the same datatype.
- C:

Fortran:

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR


Use of contiguous

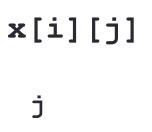
- May make program clearer to read
- Imagine sending a block of 4 integers
 - use MPI_Ssend with MPI_INT / MPI_INTEGER and count = 4
- Or ...
 - define a new contiguous type of 4 integers called **BLOCK4**
 - use MPI_Ssend with type=BLOCK4 and count = 1
- May also be useful intermediate stage in building more complicated types
 - i.e. later used in definition of another derived type

Vector Datatype Example

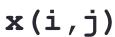
- count = 2
- stride = 5
- blocklength = 3

What is a vector type?

Why is a pattern with blocks and gaps useful?


A vector type corresponds to a subsection of a 2D array

- Think about how arrays are stored in memory
 - unfortunately, different conventions for C and Fortran!
 - must use statically allocated arrays in C because dynamically allocated arrays (using malloc) have no defined storage format
 - In Fortran, can use either static or allocatable arrays


Coordinate System (how I draw arrays)

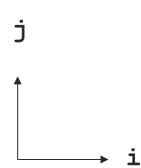
x [0][3]	x[1][3]	x[2][3]	x[3][3]
x[0][2]	x[1][2]	x[2][2]	x[3][2]
x[0][1]	x[1][1]	x[2][1]	x[3][1]
x[0][0]	x[1][0]	x[2][0]	x [3][0]

↑			
		→	i

x(1,4)	x(2,4)	x(3,4)	x(4,4)
x(1,3)	x(2,3)	x(3,3)	x(4,3)
x(1,2)	x(2,2)	x(3,2)	x(4,2)
x(1,1)	x(2,1)	x(3,1)	x(4,1)

Arrray Layout in Memory

C: x[16]

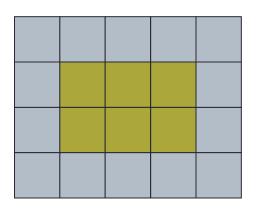

F: x(16)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
																ı

C: x[4][4]

F: x(4,4)

4	8	12	16
3	7	11	15
2	6	10	14
1	5	9	13

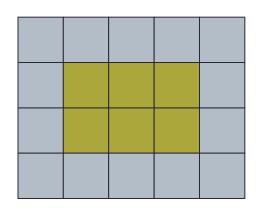

13	14	15	16
9	10	11	12
5	6	7	8
1	2	3	4

- Data is contiguous in memory
 - different conventions for mapping 2D t o 1D arrays in C and Fortran

C example

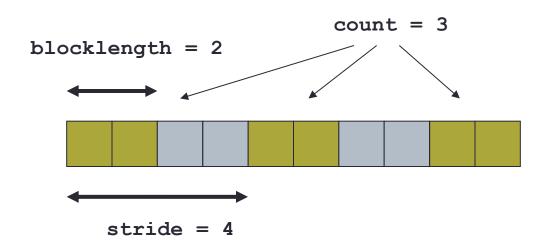
C: x[5][4]

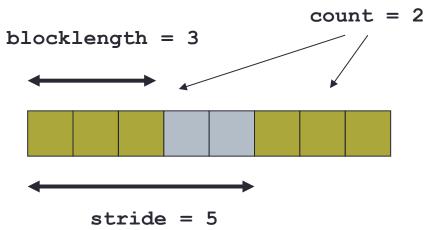
- - three blocks of two elements separated by gaps of two


A 3 x 2 subsection of a 5 x 4 array

Fortran example

F: x(5,4)




- A 3 x 2 subsection of a 5 x 4 array
 - two blocks of three elements separated by gaps of two

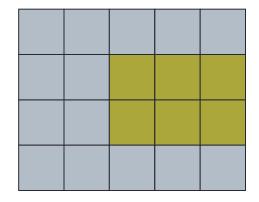
Equivalent Vector Datatypes

Constructing a Vector Datatype

Fortran:

Sending a vector

- Have defined a 3x2 subsection of a 5x4 array
 - but not defined WHICH subsection
 - is it the bottom left-hand corner? top-right?
- Data that is sent depends on what buffer you pass to the send routines
 - pass the address of the first element that should be sent



Vectors in send routines

```
MPI_Ssend(&x[1][1], 1, vector3x2, ...);
MPI_SSEND(x(2,2) , 1, vector3x2, ...)
```

```
MPI_Ssend(&x[2][1], 1, vector3x2, ...);
MPI_SSEND(x(3,2) , 1, vector3x2, ...)
```


Extent of a Datatatype

- May be useful to find out how big a derived type is
 - extent is distance from start of first to end of last data entry
 - can use these routines to compute extents of basic types too
 - answer is returned in bytes

• C:

Fortran:

```
MPI_TYPE_GET_EXTENT( DATATYPE, EXTENT, IERROR)
INTEGER DATATYPE, EXTENT, IERROR
```


Structures

Can define compound objects in C and Fortran

```
struct compound {
  int ival; integer :: ival
  double dval[3]; double precision :: dval(3)
};
end type compound
```

- Storage format NOT defined by the language
 - different compilers do different things
 - e.g. insert arbitrary padding between successive elements
 - need to tell MPI the byte displacements of every element

Constructing a Struct Datatype

• C:

```
int MPI_Type_create_struct (int count,
    int *array_of_blocklengths,
    MPI_Aint *array_of_displacements,
    MPI_Datatype *array_of_types,
    MPI_Datatype *newtype)
```

Fortran:

```
MPI_TYPE_CREATE_STRUCT (COUNT,

ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS,

ARRAY_OF_TYPES, NEWTYPE, IERROR)
```


Struct Datatype Example

- count = 2
- array_of_blocklengths[0] = 1
- array_of_types[0] = MPI_INT
- array_of_blocklengths[1] = 3
- array_of_types[1] = MPI_DOUBLE
- But how do we compute the displacements?
 - need to create a compound variable in our program
 - explicitly compute memory addresses of every member
 - subtract addresses to get displacements from origin

Address of a Variable

Fortran:

```
MPI_GET_ADDRESS (LOCATION, ADDRESS, IERROR)
```

```
<type> LOCATION (*)
INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS
INTEGER IERROR
```


Committing a datatype

- Once a datatype has been constructed, it needs to be committed before it is used in a message-passing call
- This is done using MPI TYPE COMMIT

```
• C:
```

```
int MPI_Type_commit (MPI_Datatype *datatype)
```

Fortran:

```
MPI_TYPE_COMMIT (DATATYPE, IERROR)
INTEGER DATATYPE, IERROR
```


Exercise

Derived Datatypes

- See Exercise 7.1 on the sheet
- Modify the passing-around-a-ring exercise.
- Calculate two separate sums:
 - rank integer sum, as before
 - rank floating point sum
- Use a struct datatype for this.
- If you are a Fortran programmer unfamiliar with Fortran derived types then jump to exercise 7.2
 - illustrates the use of MPI_Type_vector

