

Sequence Alignment Practical

bioexcel.eu

Reusing this material

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-ncsa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material under the following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or build on the material you must distribute your work under the same license as the original.

Aims (i)

- Familiarise yourself with running parallel programs
- Run a real parallel code
 - on different numbers of cores
 - measure the time taken (elapsed wallclock time, cpu time)
 - observe increase in performance (Amdahl's law? see later)
- Gain experience using an HPC system
 - transferring files
 - compiling
 - using a batch system

Aims (ii)

- Get you running on ARCHER
- Sort out practical details
 - usernames, passwords
 - idiosyncrasies of your Windows / Mac / Linux laptop
 - ...
- Please ask for assistance if you need it!
 - demonstrators are here to help

Sequence Alignment

• Use HMMER (*phmmer*) to search a protein database for matches to a given protein sequence:

```
Alignments for each domain:
== domain 1 score: 2966.8 bits; conditional E-value: 0
                  1 mgptsgpsllllllthlplalgspmysiitpnilrleseetmvleahdaggdvpvtvtvhdfpgkklvlssektvltpatnhmgnvtf 88
sp|P01024|C03_HUMAN
                    m ptsqpslllll lp+alg+pmys+itpnilrleseet+vleah qg + v+vtvhdfp+kk vls+e t l
                                                                                     +++ vt+
        CO3_BOVIN
                  1 MKPTSGPSLLLLLLASLPMALGNPMYSMITPNILRLESEETVVLEAHGG0GTI0VSVTVHDFPAKK0VLSNENT0LNSNNGYLSTVTI 88
                    Alignments for each domain:
== domain 1 score: 2956.0 bits; conditional E-value: 0
sp|P01024|C03_HUMAN
                   1 mgptsgpsllllllthlplalgspmysiitpnilrleseetmvleahdaggdvpvtvtvhdfpgkklvlssektvltpatnhmgnvtf 88
                    mg tsgp llllllt lplalg p+y+iitpn+lrlesee +vleah+ qgd+ v+vtvhdfp+k+ vlsse t l a n+++ v +
          CO3 PIG
                   1 MGSTSGPRLLLLLLTSLPLALGDPIYTIITPNVLRLESEEMVVLEAHEG0GDIRVSVTVHDFPAKR0VLSSETTTLNNANNYLSTVNI 88
                    Alignments for each domain:
== domain 1 score: 1343.7 bits; conditional E-value: 0
sp/P01024/C03_HUMAN 938 mnktvavrtldperlgregvgkedippadlsdgvpdtesetrillggtpvagmtedavdaerlkhlivtpsgcgegnmigmtptviav 1025
                    mnktvavrtldpe+lg+ gvgke+ip ad+sdgvp teset+illggtpvagmteda+d erlkhlivt sgcgegnmi+mt tviav
                  1 MNKTVAVRTLDPENLGQGGV0KEEIPSADISDQVPGTESETKILLQGTPVAQMTEDAIDGERLKHLIVTGSGCGEQNMIAMTHTVIAV 88
        CO3_RABIT
```

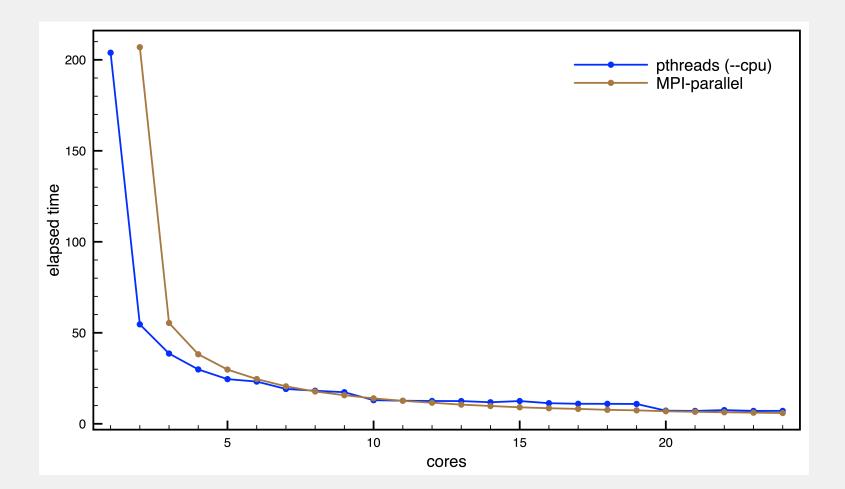

phmmer

- Alternative to BLAST-style sequence alignment
- Generates Hidden Markov Model profile for query sequence
- Three-stage filter for probabilistic alignment scoring against target database
- Returns top scoring matches, subject to chosen thresholds

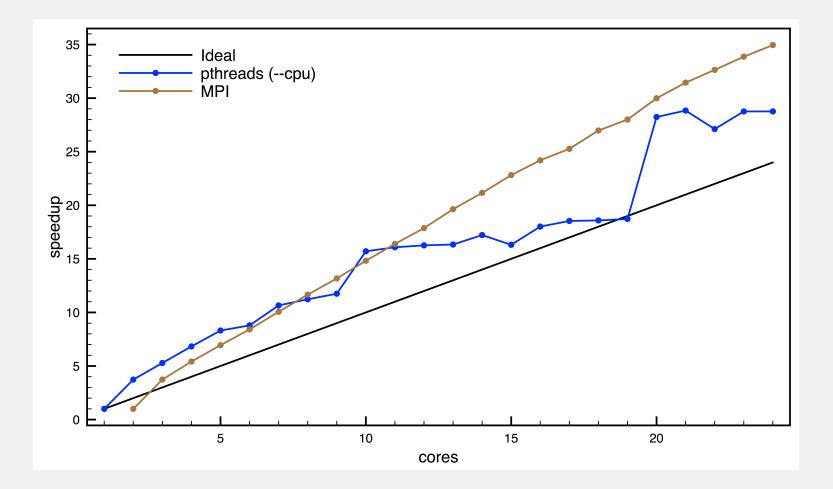
phmmer – parallel execution

- Two parallel execution modes (mutually exclusive):
 - Threads ("pthreads") restricted to single node
 - MPI can span many nodes
- Both use task farm / work queue model
- These concepts will be explained later in the course...

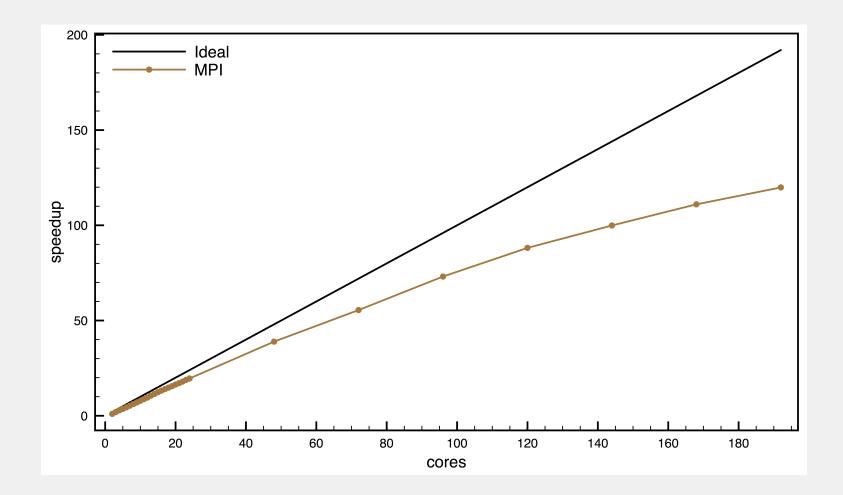
Practical


- Log on to ARCHER
- Download HMMER, unpack, and compile
- Run on one core on login node
- Run in parallel on compute nodes using batch system
 - Threaded
 - MPI
- Record times for different numbers of cores
- Plot performance figures
- See the instruction sheet..

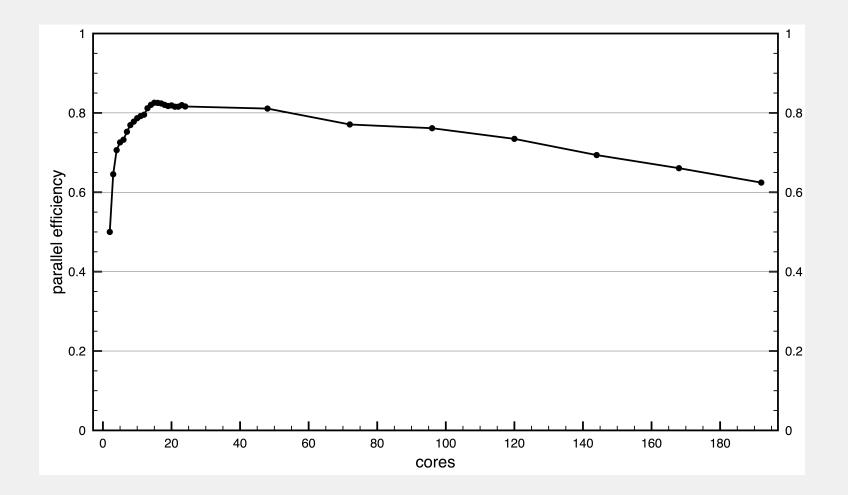
Sequence Alignment Practical Outcomes



C3 protein & Swiss-Prot mammals



C3 protein & Swiss-Prot mammals



C3 protein & Swiss-Prot all

C3 protein & Swiss-Prot all

