

Introduction to **High Performance Computing** for Life Scientists

Partners

Funding

Reusing this material

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en US

This means you are free to copy and redistribute the material and adapt and build on the material under the following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or build on the material you must distribute your work under the same license as the original.

Course Parameters

- Prerequisites
 - This course is designed to allow any researcher from the computational life sciences to be able to participate in and complete, regardless of their prior experience of high-performance computing.
 - Previous familiarity with the Linux command line is useful, but not assumed, and guidance is provided
 - No knowledge of programming is required
- Hands-on practicals form an integral part of the course
 - Use the UK national HPC service ARCHER
 - Learn by doing, gain practical skills and insights
 - Demonstrators will help with these

Aims

- What is HPC?
- Why do people use HPC and what do they use it for?
- Understand computer hardware
 - Which parts matter for performance in scientific applications?
- Understand processes and threads
 - How applications run on hardware
- Understand parallel programming models
 - How applications tackle problems in parallel
- Gain experience using an HPC machine
 - Dealing with common stumbling blocks

Aims

- Know how to evaluate parallel performance of an application
 - How do you know whether you're making good use of HPC resources?
- Understand current HPC architectures
- Know about parallel programming libraries
- Appreciate some of the challenges running life science pipelines / workflows on HPC systems
- Know about the UK & EU HPC landscape
- Gain an appreciation of the future of HPC
- Understand how HPC can benefit your research

Timetable

Day 1 Day 2 9:30 - Summary of day 1 10:00 - Welcome, introduction, course overview 9:45 - LECTURE - Parallel Models Review of HPC skills and competencies survey 10:30 - PRACTICAL - Fractal Familiarisation with fellow attendees 11:00 - BREAK - coffee/tea 11:00 - LECTURE - Why HPC? 11:30 - PRACTICAL - Fractal (continued) 11:25 - PRACTICAL - Connecting to ARCHER 12:00 - LECTURE - HPC Architectures 11:30 - BREAK - coffee/tea 12:30 - LECTURE - Batch Systems & Parallel Application 12:00 - PRACTICAL - Sequence Alignment Launchers 13:00 - BREAK - Lunch 13:00 - BREAK - Lunch 14:00 - LECTURE - Parallel Computing Patterns 14:00 - PRACTICAL - Molecular Dynamics 14:30 - LECTURE - Measuring Parallel Performance 15:00 - LECTURE - Compilers and Building Software 15:00 - PRACTICAL - Sequence Alignment 15:30 - BREAK - coffee/tea 15:30 - BREAK - coffee/tea 16:00 - PRACTICAL - Molecular Dynamics 16:00 - PRACTICAL - Sequence Alignment 16:30 - LECTURE - Parallel libraries 16:15 - LECTURE - Building Blocks - Software 17:00 - Review of the day (Operating System, Processes and Threads) 17:15 - Finish 16:45 - LECTURE - Building Blocks - Hardware (Processors & cores, Memory, Accelerators) 19:00 - Dinner at Amber restaurant 17:15 - Review of the day 17:30 - Finish

Timetable

Day 3

- 9:30 Summary of day 2
- 9:45 LECTURE Pipelines and workflows
- 10:15 PRACTICAL
- 11:00 LECTURE The UK & EU HPC Landscape
- 11:30 BREAK Coffee & Tea
- 12:00 LECTURE The Future of HPC
- 12:30 LECTURE "Where next?" and things to remember
- 13:00 Lunch
- 14:00 Individual consultations, course review and feedback / competency survey
- 15:00 Finish

Course materials

Slides, practicals, etc. available from:

http://www.archer.ac.uk/training/course-material/2017/11/intro-epcc/index.php