
ARCHER Single Node

Optimisation
Profiling

Slides contributed by Cray and EPCC

What is profiling?

• Analysing your code to find out the proportion of

execution time spent in different routines.

• Essential to know this if we are going to target

optimisation.

• No point optimising routines that don’t significantly

contribute to the overall execution time.

• can just make your code less readable/maintainable

Code profiling

• Code profiling is the first step for anyone interested in
performance optimisation

• Profiling works by instrumenting code at compile time
• Thus it’s (usually) controlled by compiler flags

• Can reduce performance

• Standard profiles return data on:
• Number of function calls

• Amount of time spent in sections of code

• Also tools that will return hardware specific data
• Cache misses, TLB misses, cache re-use, flop rate, etc…

• Useful for in-depth performance optimisation

Analysis and Profiling

Sampling and tracing

• Many profilers work by sampling the program counter at
regular intervals (normally 100 times per second).
• low overhead, little effect on execution time

• Builds a statistical picture of which routines the code is
spending time in.
• if the run time is too small (< ~10 seconds) there aren’t enough

samples for good statistics

• Tracing can get more detailed information by recording
some data (e.g. time stamp) at entry/exit to functions
• higher overhead, more effect on runtime

• unrestrained use can result in huge output files

Standard Unix profilers

• Standard Unix profilers are prof and gprof

• Many other profiling tools use same formats

• Usual compiler flags are -p and -pg:

• ftn -p mycode.F90 -o myprog for prof

• cc -pg mycode.c -o myprog for gprof

• When code is run it produces instrumentation log

• mon.out for prof

• gmon.out for gprof

• Then run prof/gprof on your executable program

• eg. gprof myprog (not gprof gmon.out)

Analysis and Profiling

Standard profilers

• prof myprog reads mon.out and produces this:
%Time Seconds Cumsecs #Calls msec/call Name

 32.4 0.71 0.71 14 50.7 relax_

 28.3 0.62 1.33 14 44.3 resid_

 11.4 0.25 1.58 3 83. __f90_close

 5.9 0.13 1.71 1629419 0.0001 _mcount

 5.0 0.11 1.82 339044 0.0003 __f90_slr_i4

 5.0 0.11 1.93 167045 0.0007

__inrange_single

 2.7 0.06 1.99 507 0.12 _read

 2.7 0.06 2.05 1 60. MAIN_

Analysis and Profiling

Standard profilers

• gprof myprog reads gmon.out and produces something

very similar

• gprof also produces a program calltree sorted by inclusive

times

• Both profilers list all routines, including obscure system ones

• Of note: mcount(), _mcount(), moncontrol(), _moncontrol()

monitor() and _monitor() are all overheads of the profiling

implementation itself

• _mcount() is called every time your code calls a function; if it’s high in

the profile, it can indicate high function-call overhead

• gprof assumes calls to a routine from different parents take the same

amount of time – may not be true

Analysis and Profiling

The Golden Rules of profiling
• Profile your code

• The compiler/runtime will NOT do all the optimisation for you.

• Profile your code yourself
• Don't believe what anyone tells you. They're wrong.

• Profile on the hardware you want to run on
• Don't profile on your laptop if you plan to run on ARCHER.

• Profile your code running the full-sized problem
• The profile will almost certainly be qualitatively different for a test case.

• Keep profiling your code as you optimise
• Concentrate your efforts on the thing that slows your code down.

• This will change as you optimise.

• So keep on profiling.

CrayPAT

• Can do both statistic sampling and function/loop level

tracing.

Recommended usage:

1. Build and instrument code

2. Run code and get statistic profile

3. Re-instrument based on profile

4. Re-run code to get more detailed tracing

Example with CrayPAT (1/2)
• Load performance tools software

module load perftools-base
module load perftools

• Re-build application (keep .o files)
 make clean
 make

• Instrument application for automatic profiling analysis
• You should get an instrumented program a.out+pat
 pat_build –O apa a.out

• Run the instrumented application (...+pat) to get top time
consuming routines

• You should get a performance file (“<sdatafile>.xf”) or
multiple files in a directory <sdatadir>

Example with CrayPAT (2/2)

• Generate text report and an .apa instrumentation file
pat_report [<sdatafile>.xf | <sdatadir>]

• Inspect the .apa file and sampling report whether additional
instrumentation is needed

• See especially sites “Libraries to trace” and “HWPC group to collect”

• Instrument application for further analysis (a.out+apa)
pat_build –O <apafile>.apa

• Run application (...+apa)

• Generate text report and visualization file (.ap2)

 pat_report –o my_text_report.txt <data>

• View report in text and/or with Cray Apprentice2
app2 <datafile>.ap2

Finding single-core hotspots

• Remember: pay attention only to user routines that consume

significant portion of the total time

• View the key hardware counters, for example

• L1 and L2 cache metrics

• use of vector (SSE/AVX) instructions

• CrayPAT has mechanisms for finding “the” hotspot in a

routine (e.g. in case the routine contains several and/or

long loops)

• CrayPAT API

• Possibility to give labels to “PAT regions”

• Loop statistics (works only with Cray compiler)

• Compile & link with CCE using -h profile_generate

• pat_report will generate loop statistics if the flag is enabled

 USER / remap_
--
 Time% 25.2%
 Time 15.801180 secs
 Imb. Time 2.582609 secs
 Imb. Time% 14.7%
 Calls 0.026M/sec 460,800.0 calls
 CPU_CLK_UNHALTED:THREAD_P 77,964,376,624
 CPU_CLK_UNHALTED:REF_P 2,689,572,161
 DTLB_LOAD_MISSES:MISS_CAUSES_A_WALK 20,626,569
 DTLB_STORE_MISSES:MISS_CAUSES_A_WALK 17,745,058
 L1D:REPLACEMENT 2,753,483,367
 L2_RQSTS:ALL_DEMAND_DATA_RD 1,912,839,218
 L2_RQSTS:DEMAND_DATA_RD_HIT 1,757,495,428
 FP_COMP_OPS_EXE:SSE_SCALAR_DOUBLE 1,597
 FP_COMP_OPS_EXE:SSE_FP_SCALAR_SINGLE 1,556,036,610
 FP_COMP_OPS_EXE:X87 1,878,388,524
 FP_COMP_OPS_EXE:SSE_PACKED_SINGLE 302,976,589
 SIMD_FP_256:PACKED_SINGLE 5,003,127,724
 User time (approx) 17.476 secs 47,202,147,918 cycles 100.0% Time
 CPU_CLK 2.90GHz
 HW FP Ops / User time 2,556.183M/sec 44,671,354,883 ops 11.8%peak(DP)
 Total SP ops 2,448.698M/sec 42,792,964,761 ops
 Total DP ops 107.485M/sec 1,878,390,122 ops
 MFLOPS (aggregate) 61,348.39M/sec
 D2 cache hit,miss ratio 94.4% hits 5.6% misses
 D2 to D1 bandwidth 6,680.690MiB/sec 122,421,709,963 bytes
 Average Time per Call 0.000034 secs
 CrayPat Overhead : Time 11.4%

Flat profile data

HW counter

values

Derived

metrics

Hardware performance counters

• CrayPAT can interface with Cray XC30's HWPCs

• Gives extra information on how hardware is behaving

• Very useful for understanding (& optimising) application performance

• Provides information on

• hardware features, e.g. caches, vectorisation and memory bandwidth

• Available on per-program and per-function basis

• Per-function information only available through tracing

• Number of simultaneous counters limited by hardware

• 4 counters available with Intel Ivybridge processors

• If you need more, you'll need multiple runs

• Most counters accessed through the PAPI interface

• Either native counters or derived metrics constructed from these

Hardware counters selection
• HWPCs collected using CrayPAT

• Compile and instrument code for profiling as before

• Set PAT_RT_PERFCTR environment variable at runtime

• e.g. in the job script

• Hardware counter events are not collected by default (except with APA)

• export PAT_RT_PERFCTR=...

• either a list of named PAPI counters

• or <set number> = a pre-defined (and useful) set of counters

• recommended way to use HWPCs

• there are 15 groups to choose from

• To see them:

• pat_help -> counters -> ivybridge –> groups

• man hwpc

• more ${CRAYPAT_ROOT}/share/CounterGroups.intel_fam6mod62

Technical term for

Ivybridge

Predefined Ivybridge HW Counter Groups

 0: D1 with instruction counts

 1: Summary -- FP and cache

metrics

 2: D1, D2, L3 Metrics

 6: Micro-op queue stalls

 7: Back end stalls

 8: Instructions and branches

 9: Instruction cache

 10: Cache Hierarchy

11: Floating point operations dispatched

12: AVX floating point operations

13: SSE and AVX floating point

operations SP

14: SSE and AVX floating point

operations DP

19: Prefetchs

23: FP and cache metrics (same as 1)

Default is number 1 with CrayPAT APA procedure

 USER / sweepy_
--
 Time% 14.6%
 Time 8.738150 secs
 Imb. Time 3.077320 secs
 Imb. Time% 27.2%
 Calls 11.547 /sec 100.0 calls
 CPU_CLK_UNHALTED:THREAD_P 92,754,888,918
 CPU_CLK_UNHALTED:REF_P 2,759,876,135
 L1D:REPLACEMENT 1,813,741,166
 L2_RQSTS:ALL_DEMAND_DATA_RD 1,891,459,700
 L2_RQSTS:DEMAND_DATA_RD_HIT 1,644,133,800
 LLC_MISSES 98,952,928
 LLC_REFERENCES 690,626,471
 User time (approx) 8.660 secs 23,390,899,520 cycles 100.0% Time
 CPU_CLK 3.36GHz
 D2 cache hit,miss ratio 86.4% hits 13.6% misses
 L3 cache hit,miss ratio 85.7% hits 14.3% misses
 D2 to D1 bandwidth 13,330.757MiB/sec 121,053,420,792 bytes
 Average Time per Call 0.087381 secs
 CrayPat Overhead : Time 0.0% ….

Example: Group 2

Interpreting the performance numbers

• Performance numbers are an average over all ranks

• explains non-integer values

• This does not always make sense

• e.g. if ranks are not all doing the same thing:

• Master-slave schemes

• MPMD apruns combining multiple, different programs

• Want them to only process data for certain ranks

• pat_report –sfilter_input='condition' ...

• condition should be an expression involving pe, e.g.

• pe<1024 for the first 1024 ranks only

• pe%2==0 for every second rank

OpenMP data collection and reporting
• Give finer-grained profiling of threaded routines

• Measure overhead incurred entering and leaving

• Parallel regions

• #pragma omp parallel

• Work-sharing constructs within parallel regions

• #pragma omp for

• Timings and other data now shown per-thread
• rather than per-rank

• OpenMP tracing enabled with pat_build -gomp ...
• CCE: insert tracing points around parallel regions automatically

• Intel, Gnu: need to use CrayPAT API manually

OpenMP data collection and reporting
• Load imbalance for hybrid MPI/OpenMP programs

• now calculated across all threads in all ranks

• imbalances for MPI and OpenMP combined

• Can choose to see imbalance in each programming model separately

• See next slide for details

• Data displayed by default in pat_report

• no additional options needed

• Report focuses on where program is spending its time

• Assumes all requested resources should be used

• you may have reasons not to want to do this, of course

Memory usage

• Knowing how much memory each rank uses is important:

• What is the minimum number of cores I can run this problem on?

• given there is 32GB (~30GB usable) of memory per node (32 cores)

• Does memory usage scale well in the application?

• Is memory usage balanced across the ranks in the application?

• Is my application spending too much time allocating and freeing?

Heap statistics

Notes for table 5:

 Table option:
 -O heap_hiwater
 Options implied by table option:
 -d am@,ub,ta,ua,tf,nf,ac,ab -b pe=[mmm]

 This table shows only lines with Tracked Heap HiWater MBytes > 0.

Table 5: Heap Stats during Main Program

 Tracked | Total | Total | Tracked | Tracked |PE[mmm]
 Heap | Allocs | Frees | Objects | MBytes |
 HiWater | | | Not | Not |
 MBytes | | | Freed | Freed |

 9.794 | 915 | 910 | 4 | 1.011 |Total
|---
| 9.943 | 1170 | 1103 | 68 | 1.046 |pe.0
| 9.909 | 715 | 712 | 3 | 1.010 |pe.22
| 9.446 | 1278 | 1275 | 3 | 1.010 |pe.43
|===

Memory per rank

~30GB usable memory per node

Too many allocs/frees?

Would show up as ETC

time in CrayPAT report

Memory leaks

Not usually a problem in HPC

Summary

• Profiling is essential to identify performance bottlenecks

• even at single core level

• CrayPAT has some very useful extra features

• can pinpoint and characterise the hotspot loops (not just routines)

• hardware performance counters give extra insight into performance

• well-integrated view of hybrid programming models

• most commonly MPI/OpenMP

• also CAF, UPC, SHMEM, pthreads, OpenACC, CUDA

• information on memory usage

• And remember the Golden Rules

• including the one about not believing what anyone tells you

