
ARCHER Single Node

Optimisation
Optimising with the compiler

Slides contributed by Cray and EPCC

Overview
• Introduction

• Optimisation techniques

• compiler flags

• compiler hints

• code modifications

• Optimisation topics

• locals and globals

• conditionals

• data types

• CSE

• register use and spilling

• loop unrolling/pipelining

• inlining

Introduction

• Unless we write assembly code, we are always using a

compiler.

• Modern compilers are (quite) good at optimisation

• memory optimisations are an exception

• Usually much better to get the compiler to do the

optimisation.

• avoids machine-specific coding

• compilers break codes much less often than humans

• Even modifying code can be thought of as “helping the

compiler”.

Compiler flags

• Typical compiler has hundreds of flags/options.
• most are never used

• many are not related to optimisation

• Most compilers have flags for different levels of general
optimisation.
• -O1, -O2, -O3,....

• When first porting code, switch optimisation off.
• only when you are satisfied that the code works, turn optimisation

on, and test again.

• but don’t forget to use them!

• also don’t forget to turn off debugging, bounds checking and
profiling flags...

Compiler flags (cont.)

• Note that highest levels of optimisation may

• break your code.

• give different answers, by bending standards.

• make your code go slower.

• Always read documentation carefully.

• Isolate routines and flags which cause the problem.

• binary chop

• one routine per file may help

Compiler flags (cont.)

• Many compilers are designed for an instruction set

architecture, not one machine.

• flags to target ISA versions, processor versions, cache

configurations

• defaults may not be optimal, especially if cross-compiling

• Some optimisation flags may not be part of -On

• check documentation

• use sparingly (may only be beneficial in some cases)

Compiler hints

• A mechanism for giving additional information to the

compiler, e.g.

• values of variables (e.g. loop trip counts)

• independence of loop iterations

• independence of index array elements

• aliasing properties

• Appear as comments (Fortran), or preprocessor pragmas

(C)

• don’t affect portability

Incremental compilation

• Compilers can only work with the limited information available
to them.

• Most compilers compile code in an incremental fashion

• Each source file is compiled independently of each other.

• Most compilers ignore all source files other than those specified on the
command line (or implicitly referenced via search paths, e.g. include files)

• Routines from other source files treated as “black-boxes”
• Make worst case assumptions based on routine prototype.

• You can help by providing more information

• Information in routine prototypes

• INTENT, PURE, const, etc.

• Compiler hints

• Command line flags

Code modification

• When flags and hints don’t solve the problem, we will have to
resort to code modification.

• Be aware that this may

• introduce bugs.

• make the code harder to read/maintain.

• only be effective on certain architectures and compiler versions.

• Try to think about

• what optimisation the compiler is failing to do

• what additional information can be provided to compiler

• how can rewriting help

• How can we work out what the compiler has done?
• eyeball assembly code

• use diagnostics flags

• Increasingly difficult to work out what actually occurred in
the processor.
• superscalar, out-of-order, speculative execution

• Can estimate expected performance
• count flops, load/stores, estimate cache misses

• compare actual performance with expectations

Locals and globals

• Compiler analysis is more effective with local variables

• Has to make worst case assumptions about global

variables

• Globals could be modified by any called procedure (or by

another thread).

• Use local variables where possible

• Automatic variables are stack allocated: allocation is

essentially free.

• In C, use file scope globals in preference to externals

Conditionals
• Even with sophisticated branch prediction hardware,

branches are bad for performance.

• Try to avoid branches in innermost loops.

• if you can’t eliminate them, at least try to get them out of the critical

loops.

do i=1,k

 if (n .eq. 0) then

 a(i) = b(i) + c

 else

 a(i) = 0.

 endif

end do

if (n .eq. 0) then

 do i=1,k

 a(i) = b(i) + c

 end do

else

 do i=1,k

 a(i) = 0.

 end do

endif

• A little harder for the compiler.....

do i=1,k

 if (i .le. j) then

 a(i) = b(i) + c

 else

 a(i) = 0.

 endif

end do

do i=1,j

 a(i) = b(i) + c

end do

do i = j+1,k

 a(i) = 0.

end do

Data types

• Performance can be affected by choice of data types

• often a difference between 32-bit and 64-bit arithmetic (integer and

floating point).

• complicated by trade-offs with memory usage and cache hit rates

• Avoid unnecessary type conversions

• e.g. int to long, float to double

• N.B. some type conversions are implicit

• However sometimes better than the alternative e.g.

• Use DP reduction variable rather than increase array precision.

CSE

• Compilers are generally good at Common Subexpression

Elimination.

• A couple of cases where they might have trouble:

Different order of operands

Function calls

d = a + c

e = a + b + c

d = a + func(c)

e = b + func(c)

CSE including function calls.

• To extract a CSE containing a function call the compiler

has to be sure of various things:

• The function always returns the same value for the same input.

• The function does not cause any side effects that would be effected

by changing the number of times the function is called:

• Modifying its inputs.

• Changing global data.

• Need to be very careful with function prototypes to allow

compiler to know this.

Register use

• Most compilers make a reasonable job of register
allocation.
• But only limited number available.

• Can have problems in some cases:
• loops with large numbers of temporary variables

• such loops may be produced by inlining or unrolling

• array elements with complex index expressions

• can help compiler by introducing explicit scalar temporaries,
most compilers will use a register for an explicit scalar in
preference to an implicit CSE.

for (i=0;i<n;i++){

 b[i] += a[c[i]];

 c[i+1] = 2*i;

}

tmp = c[0];

for (i=0;i<n;i++){

 b[i] += a[tmp];

 tmp = 2*i;

 c[i+1] = tmp;

}

Spilling

• If compiler runs out of registers it will generate spill code.

• store a value and then reload it later on

• Examine your source code and count how many

loads/stores are required

• Compare with assembly code

• May need to distribute loops

Loop unrolling

• Loop unrolling and software pipelining are two of the most
important optimisations for scientific codes on modern
RISC processors.

• Compilers generally good at this.

• If compiler fails, usually better to try and remove the
impediment, rather than unroll by hand.
• cleaner, more portable, better performance

• Compiler has to determine independence of iterations

Loop unrolling

• Loops with small bodies generate small basic blocks of

assembly code

• lot of dependencies between instructions

• high branch frequency

• little scope for good instruction scheduling

• Loop unrolling is a technique for increasing the size of the

loop body

• gives more scope for better schedules

• reduces branch frequency

• make more independent instructions available for multiple issue.

21

Loop unrolling

• Replace loop body by multiple copies of the body

• Modify loop control

• take care of arbitrary loop bounds

• Number of copies is called unroll factor

Example:

22

do i=1,n

 a(i)=b(i)+d*c(i)

end do

do i=1,n-3,4

 a(i)=b(i)+d*c(i)

 a(i+1)=b(i+1)+d*c(i+1)

 a(i+2)=b(i+2)+d*c(i+2)

 a(i+3)=b(i+3)+d*c(i+3)

end do

do j = i,n

 a(j)=b(j)+d*c(j)

end do

• Remember that this is in fact done by the compiler at the
IR or assembly code level.

• If the loop iterations are independent, then we end up with
a larger basic block with relatively few dependencies, and
more scope for scheduling.
• also reduce no. of compare and branch instructions

• Choice of unroll factor is important (usually 2,4,8)
• if factor is too large, can run out of registers

• Cannot unroll loops with complex flow control
• hard to generate code to jump out of the unrolled version at the

right place

23

Outer loop unrolling

• If we have a loop nest, then it is possible to unroll one of

the outer loops instead of the innermost one.

• Can improve locality.

24

do i=1,n,4

 do j=1,m

 a(i,j)=c*d(j)

 a(i+1,j)=c*d(j)

 a(i+2,j)=c*d(j)

 a(i+3,j)=c*d(j)

 end do

end do

do i=1,n

 do j=1,m

 a(i,j)=c*d(j)

 end do

end do

2 loads for 1 flop 5 loads for 4 flops

Variable expansion

• Variable expansion can help break dependencies in

unrolled loops

• improves scheduling opportunities

• Close connection to reduction variables in parallel loops

25

for (i=0,i<n,i+=2){

 b1+=a[i];

 b2+=a[i+1];

}

b=b1+b2;

for (i=0,i<n,i+=2){

 b+=a[i];

 b+=a[i+1];

}

for (i=0,i<n,i++){

 b+=a[i];

}

unroll

expand b

Register renaming

• Registers may be reused within a basic block introducing

unnecessary dependencies.

• Using two (or more) different registers can preserve

program correctness, but allow more scheduling flexibility

• Some CPUs perform register rename and reschedule in hardware,

this can utilise additional registers not visible to compiler.

27

add %f2,1,%f1

st [%o1],f1

add %f3,2,%f1

st [%o2],f1

add %f2,1,%f1

st [%o1],f1

add %f3,2,%f27

st [%o2],f27

add %f2,1,%f1

add %f3,2,%f27

st [%o1],f1

st [%o2],f27

rename reschedule

Software pipelining

• Problem with scheduling small loop bodies is that there

are dependencies between instructions in the basic block.

• Potentially possible to start executing instructions from the

next iteration before current one is finished.

• Idea of software pipelining is to construct a basic block

that contains instructions from different loop iterations.

• fewer dependencies between instructions in block

• needs additional code at start and end of loop

28

Software pipelining

29

for (i=0;i<n;i++){

 t1 = a(i); //L i

 t2 = b + t1; //A i

 a(i) = t2; //S i

}

for (i=0;i<n;i++){

 a(i) += b;

}

//prologue

t1 = a(0); //L 0

t2 = b + t1; //A 0

t1 = a(1); //L 1

for (i=0;i<n-2;i++){

 a(i) = t2; //S i

 t2 = b + t1; //A i+1

 t1 = a(i+2); //L i+2

}

//epilogue

a(n-2) = t2; //S n-2

t2 = b + t1; //A n-1

a(n-1) = t2; //S n-1

At instruction level

30

L: ld [%r1],%f0

 fadd f0,f1,f2

 st [%r1],f2

 add %r1,4,%r1

 cmp %r1,%r3

 bg L

 nop

 ld [%r1],%f0

 fadd f0,f1,f2

 ld [%r1+4],%f0

L: st [%r1],f2

 fadd f0,f1,f2

 ld [%r1+8],%f0

 cmp %r1,%r3-8

 bg L

 add %r1,4,%r1

 st [%r1],f2

 add %r1,4,%r1

 fadd f0,f1,f2

 st [%r1],f2

st must wait for fadd

to complete: pipeline stall

for data hazard

Impediments to unrolling

• Function calls

• except in presence of good interprocedural analysis and inlining

• Conditionals

• especially control transfer out of the loop

• lose most of the benefit anyway as they break up the basic block.

• Pointer/array aliasing

• compiler can’t be sure different values don’t overlap in memory

Example

• Compiler doesn’t know that a[indx[i]] and a[ip]

don’t overlap

• Could try hints

• tell compiler that indx is a permutation

• tell compiler that it is OK to unroll

• Or could rewrite:

for (i=0;i<ip;i++){

 a[indx[i]] += c[i] * a[ip];

}

tmp = a[ip];

for (i=0;i<ip;i++){

 a[indx[i]] += c[i] * tmp;

}

Inlining
• Compilers very variable in their abilities

• Hand inlining possible
• very ugly (slightly less so if done via pre-processor macros)

• causes code replication

• Compiler has to know where the source of candidate routines is.
• sometimes done by compiler flags

• easier for routines in the same file

• try compiling multiple files at the same time

• Very important for OO code
• OO design encourages methods with very small bodies

• inline keyword in C++ can be used as a hint

Multiple Optimisation steps

• Sometimes multiple optimisation steps are required.

• Multiple levels of in-lining.

• In-lining followed by loop un-rolling followed by CSE.

• The compiler may not be able to perform all steps at the

same time

• You may be able to help the compiler by performing some of the

steps by hand.

• Look for the least damaging code change that allows the compiler

to complete the rest of the necessary changes.

• Ideally try each step in isolation before attempting to combine

hand-optimisations.

General Cray Compiler Flags
• Optimisation Options

• -O2 optimal flags [enabled by default]

• -O3 aggressive optimization

• -O ipaN (ftn) or -hipaN (cc/CC) inlining, N=0-5 [default N=3]

• Create listing files with optimization info
• -ra (ftn) or -hlist=a (cc/CC) creates a listing file with all

 optimization info

• -rm (ftn) or -hlist=m (cc/CC) produces a source listing with
 loopmark information

• Parallelization Options
• -O omp (ftn) or -h omp (cc/CC) Recognize OpenMP directives

 [default]

• -O threadN (ftn) or control the compilation and -
h threadN (cc/CC) optimization of OpenMP directives,
 N=0-3 [default N=2]

 More info: man crayftn, man craycc, man crayCC

Recommended CCE Compilation Options
• Use default optimization levels

• It’s the equivalent of most other compilers -O3 or -fast

• It is also our most thoroughly tested configuration

• Use -O3,fp3 (or -O3 -hfp3, or some variation) if the application runs
cleanly with these options
• -O3 only gives you slightly more than the default -O2

• Cray also test this thoroughly

• -hfp3 gives you a lot more floating point optimization (default is -hfp2)

• If an application is intolerant of floating point reordering, try a lower
-hfp number
• Try -hfp1 first, only -hfp0 if absolutely necessary (-hfp4 is the maximum)

• Might be needed for tests that require strict IEEE conformance

• Or applications that have ‘validated’ results from a different compiler

• Do not use too aggressive optimizations , e.g. -hfp4
• Higher numbers are not always correlated with better performance

OpenMP

• OpenMP is ON by default
• This is the opposite default behavior that you get from GNU and Intel

compilers

• Optimizations controlled by -OthreadN (ftn) or -hthreadN (cc/CC),
N=0-3 [default N=2]

• To shut off use -O/-h thread0 or -xomp (ftn) or -hnoomp

• Autothreading is NOT on by default
• -hautothread to turn on

• Interacts with OpenMP directives

• If you do not want to use OpenMP and have OMP directives in
the code, make sure to shut off OpenMP at compile time

CCE – GNU – Intel compilers
• More or less all optimizations and features provided by CCE are available in

Intel and GNU compilers

• GNU compiler serves a wide range of users & needs
• Default compiler with Linux, some people only test with GNU

• GNU defaults are conservative (e.g. -O1)
• -O3 includes vectorization and most inlining

• Performance users set additional options

• Intel compiler is typically more aggressive in the optimizations

• Intel defaults are more aggressive (e.g -O2), to give better performance “out-of-the-box”
• Includes vectorization; some loop transformations such as unrolling; inlining within source file

• Options to scale back optimizations for better floating-point reproducibility, easier debugging, etc.

• Additional options for optimizations less sure to benefit all applications

• CCE is even more aggressive in the optimizations by default

• Better inlining and vectorization

• Aggressive floating-point optimizations

• OpenMP enabled by default

• GNU users probably have to specify higher optimisation levels

Cray, Intel and GNU compiler flags
Feature Cray Intel GNU

Listing -hlist=a -opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form

Vectorization By default at -O1 and

above

By default at -O2 and

above

By default at -O3 or using

-ftree-vectorize

Inter-Procedural Optimization -hwp -ipo -flto (note: link-time optimization)

Floating-point optimizations -hfpN, N=0...4 -fp-model

[fast|fast=2|precise|

except|strict]

-f[no-]fast-math or

-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive Optimization -O3 -hfp3 -fast -Ofast -mavx

-funroll-loops

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64

-s integer64

-real-size 64

-integer-size 64

-freal-4-real-8

-finteger-4-integer-8

Summary

• Remember compiler is always there.

• Try to help compiler, rather than do its job for it.

• Use flags and hints as much as possible

• Minimise code modifications

