
ARCHER Single Node 

Optimisation 
Optimising for the Memory Hierarchy  

 

Slides contributed by Cray and EPCC 



Overview 
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• Utilizing Caches 
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Motivation 

• Why is memory structure important? 

• With current hardware memory access has become the most 

significant resource impacting program performance. 

• Changing memory structures can have a big impact on code 

performance. 

• Memory structures are frequently global to the program 

• Different code sections communicate via memory structures. 

• The programming cost of changing a memory structure can be very 

high. 



Programmer’s perspective: 

• Memory structures are the programmers responsibility 

• At best the compiler can add small amounts of padding in limited 

circumstances. 

• Compilers can (and hopefully will) try to make best use of the 

memory structures that you specify (e.g. uni-modular 

transformations) 

• Changing the memory structures you specify may allow 

the compiler to generate better code. 



Types of data structure 

• Arrays 

• Pointer arrays 

• records/structures 

• Trees and lists 

• Objects 



Arrays 

• Arrays are large blocks of memory indexed by integer 

index 

• Probably the most common data structure used in HPC 

codes 

• Good for representing regularly discretised versions of 

dense continuous data 
𝑓 𝑥, 𝑦, 𝑧 → 𝐹 𝑖 𝑗 [𝑘] 



Arrays 

• Multi dimensional arrays use multiple indexes (shorthand) 
REAL  A(100,100,100)  REAL A(1000000) 

A (i,j,k) =  7.0    A(i+100*j+10000*k) = 7.0 

 

float  A[100][100][100];  float A[1000000]; 

A [i][j][k] =  7.0   A(k+100*j+10000*i) = 7.0 

 

• Address calculation requires computation but still 
relatively cheap. 

• Compilers have better chance to optimise where 
dimension sizes are known at compile time. 

 

 



Arrays 

• Many codes loop over array elements 

• Data access pattern is regular and easy to predict 

• Good spatial locality achieved by accessing neighbouring 

elements on consecutive iterations of the innermost loop. 

• Unless loop nest order and array index order match the 

access pattern may not be optimal for cache re-use. 

• Compiler can potentially address these problems by transforming 

the loops. 

• But often can do a better job when provided with a more cache-

friendly index order. 



do i=1,n 

  do j=1,m 

    a(i,j)=a(i,j)+b(i,j) 

  end do 

end do 

do j=1,m 

  do i=1,m 

    a(i,j)=a(i,j)+b(i,j) 

  end do 

end do 

for(i=0;i<N;i++){ 

  for(j=0;j<M;j++){ 

    a[i][j]+=b[i][j]; 

  } 

}  

   

for(j=0;j<M;j++){ 

  for(i=0;i<N;i++){ 

    a[i][j]+=b[i][j]; 

  } 

}  

   

Bad spatial locality                                   Good spatial locality 



Dynamic sized arrays (Fortran) 

• Not always possible/desirable to fix array sizes at compile 

time  

• Fortran allows arrays to be dynamically sized based on subroutine 

arguments. 

• Address calculation can still be optimised using CSE. 

• Size of slowest moving index is not needed in address 

computation. 

• Fortran actually allows this dimension to be unspecified in 

subroutine arguments (assumed size arrays) 

 



Dynamic sized arrays (C) 

• C requires array dimensions to be known at compile time. 

• However can make slowest dimension variable with 

pointers and typedef 

typedef  float Mat[2][2]; 

Mat *data =(Mat *) malloc(n*sizeof(Mat)); 

for(i=0;i<n;i++){ 

  for(j=0;j<2;j++){ 

    for(k=0;k<2;k++){ 

        data[i][j][k] = 12.0; 

    } 

  } 

}  



Pointer arrays 
• Alternative to multi-dimensional arrays 

• Pointer to: array of pointers to: array of pointers to: …. Data 

 

 

 

 

 

 

 

 

 

 

 

• Note reverse index order to previous example! 

float ***data; 

data = (float ***) malloc(2*sizeof(float **)); 

for(i=0;i<2;i++){ 

  data[i]=(float **) malloc(2*sizeof(float *)); 

   for(j=0;j<2;j++){ 

      data[i][j] = (float *) malloc(n*sizeof(float)); 

      for(k=0;k<n;k++){ 

         data[i][j][k] = 12.0; 

      } 

   } 

} 



Pointer arrays II 
• In C the use-syntax is the same as for arrays 

• a[I][j][k] = 7.0; 

• But actually equivalent to 

• p1 = a[I] 

• p2= p1[j] 

• p2[k] = 7.0 

• Advantage 

• The “columns” are allocated separately and need not be the same length 

• Disadvantages 

• Need multiple memory accesses per element access. 

• Need more memory to store all the pointers 

• Less regular access pattern 

• Messy to create/destroy 

 



Records/structures 

• Collection of values (of varying types) 

• C structs 

• F90 user defined types 

• Good for representing multi-valued data or sparse/scattered 
data. 

• Related variables are stored close together may help cache 
use. 

• If a code section only uses a subset of the values cache use may 
suffer. 

• Easy to add/re-order members without breaking code as 
members are referenced by name not position. 

• much harder to remove them.  



Structures and the compiler 

• Programmer only specifies what a structure contains. 

• Compiler chooses layout within the structure. 

• In C the compiler usually preserves the order of members 

but inserts padding between members if needed to meet 

alignment constraints 

• i.e.  Doubles must be aligned on double-word boundaries. 

• Padding reduces cache-line utilisation so order members to reduce 

padding. 

• Similarly in Fortran but can use SEQUENCE keyword to 

force deterministic layout. 



Arrays of structs or structs of arrays? 

Array of structs 

struct Part{    

  double x;    

  double y;    

  double z;  

  int index; 

  double mass; 

}  

Part data[numParts];    

struct AllParts{    

  double x[numParts];    

  double y[numParts];    

  double z[numParts];  

  int index[numParts]; 

  double mass[numParts]; 

}  

AllParts data;    

or 

Struct of arrays 



Array of structs: 

• May have good temporal locality if there is lots of computation on 

each struct 

• May have poor spatial locality if computations don’t 

• Unfavourable for vector loads/stores 

• Natural for OO design 

Struct of arrays 

• May have better spatial locality (use all data on cache line), but 

worse temporal locality 

• More favourable for vector loads/stores 

• Less natural for OO design 



Arrays of structs of (short) arrays 

• Vector friendly without compromising temporal locality too 

much?  

• Not at all natural from a design perspective!  

 

struct FourVecParts{    

  double x[4];    

  double y[4];    

  double z[4];  

  int index[4]; 

  double mass[4]; 

}  

FourVecParts data[(numParts+3)/4];    



Objects 

• Usually implemented much the same as structures 

• But objects are opaque  

• Language restricts access to the internal data. 

• Usually need to use special access functions. 

• Much easier to change underlying data structure as this is 

only visible to small fraction of the program 

• Access functions introduce additional overhead 

• Function calls 

• Memory copies 

• Really only a problem for small low-level objects 



Trees/lists 

• Structures/Objects can contain pointers to other 
structures. 
• Can construct trees and lists etc. 

• Very flexible and can grow dynamically 
• Same problems as pointer arrays. 

• Additional memory accesses to navigate data 

• Additional storage to store pointers 

• Access pattern is very hard to predict.  

• Limited navigation 
• Can only follow access pattern supported by pointer structure 

• e.g. cannot jump to middle of a list without traversing half the 
nodes. 



High level data structures 

• Many modern languages have built in-support for high 

level data structures such as 

• Lists 

• Trees 

• Sets 

• Maps 

• Etc. 

• May be available either as built-in data-types or as 

standard libraries. 

• Have the same intrinsic advantages/disadvantages as home made 

equivalents but typically better tested and optimised. 



What can go wrong 

• Poor cache/page use 

• Lack of spatial locality 

• Lack of temporal locality 

• Unnecessary memory accesses 

• pointer chasing 

• array temporaries 

• Aliasing problems 

• Use of pointers can inhibit code optimisation  



Reducing memory accesses 

• Memory accesses are often the most important limiting 

factor for code performance. 

• Many older codes were written when memory access was relatively 

cheap. 

• Things to look for: 

• Unnecessary pointer chasing 

• pointer arrays that could be simple arrays 

• linked lists that could be arrays. 

• Unnecessary temporary arrays. 

• Tables of values that would be cheap to re-calculate. 

 



Utilizing caches 

• Want to avoid cache conflicts 

• This happens when too much related data maps to the same cache 

set. 

• Arrays or array dimensions proportional to (cache-size/set-size) 

can cause this. 

• Rarely a problem with 8- and 16-way associative caches on XC30 

• Lots of accesses in a loop to arrays with power-of-2 dimensions 

might still be bad  

• Can pad arrays to avoid this. 



Utilizing caches II 

• Want to use all of the data in a cache line 

• loading unwanted values is a waste of memory bandwidth. 

• structures are good for this 

• Or loop fastest over the corresponding index of an array. 

• Place variables that are used together close together 

• Also have to worry about alignment with cache block boundaries. 

• Avoid “gaps” in structures 

• In C structures may contain gaps to ensure the address of each 

variable is aligned with its size.  



Bad Cache Alignment 
CrayPAT profiling with export PAT_RT_HWPC=2 (L1 and L2 metrics) 
 

Time%                                       0.2% 

Time                                    0.000003 

Calls                                          1 

PAPI_L1_DCA              455.433M/sec       1367 ops 

DC_L2_REFILL_MOESI        49.641M/sec        149 ops 

DC_SYS_REFILL_MOESI        0.666M/sec          2 ops 

BU_L2_REQ_DC              74.628M/sec        224 req 

User time                  0.000 secs       7804 cycles 

Utilization rate                           97.9% 

L1 Data cache misses      50.308M/sec        151 misses 

LD & ST per D1 miss                         9.05 ops/miss 

D1 cache hit ratio                         89.0% 

LD & ST per D2 miss                       683.50 ops/miss 

D2 cache hit ratio                         99.1% 

L2 cache hit ratio                         98.7% 

Memory to D1 refill        0.666M/sec          2 lines 

Memory to D1 bandwidth    40.669MB/sec       128 bytes 

L2 to Dcache bandwidth  3029.859MB/sec      9536 bytes 

cf: 8 



Good Cache Alignment 

Time%                                       0.1% 

Time                                    0.000002 

Calls                                          1 

PAPI_L1_DCA              689.986M/sec       1333 ops 

DC_L2_REFILL_MOESI        33.645M/sec         65 ops 

DC_SYS_REFILL_MOESI                            0 ops 

BU_L2_REQ_DC              34.163M/sec         66 req 

User time                  0.000 secs       5023 cycles 

Utilization rate                           95.1% 

L1 Data cache misses      33.645M/sec         65 misses 

LD & ST per D1 miss                        20.51 ops/miss 

D1 cache hit ratio                         95.1% 

LD & ST per D2 miss                      1333.00 ops/miss 

D2 cache hit ratio                        100.0% 

L2 cache hit ratio                        100.0% 

Memory to D1 refill                            0 lines 

Memory to D1 bandwidth                         0 bytes 

L2 to Dcache bandwidth  2053.542MB/sec      4160 bytes 



Cache blocking 

• A combination of: 

• strip mining (also called loop blocking, loop tiling...) 

• loop interchange 

• Designed to increase data reuse: 

• temporal reuse: reuse array elements already referenced 

• spatial reuse: good use of cache lines 

• Many ways to block any given loop nest 

• Which loops should be blocked? 

• What block size(s)  will work best? 



• Analysis can reveal which ways are beneficial 

• How big is your cache?  

• L1 is 32kB on Ivybridge. 

• How many cache lines can it hold?  

• each line typically 64B, so  

• How many cache lines are needed per loop iteration? 

• ... 

• But trial-and-error is probably faster 

• or autotuning of the code 

 



Loop tiling 

30 

for (i=0;i<n;i++){ 

  for (j=0;j<n;j++){ 

     a[i][j]=b[j][i]; 

  } 

} 

for (ii=0;ii<n;ii+=B){ 

  for (jj=0;jj<n;jj+=B){ 

    for (i=ii;i<ii+B;i++){ 

      for (j=jj;j<jj+B;j++){ 

         a[i][j]=b[j][i]; 

      } 

    } 

  } 

} 

j 
i 

j 

i 



Loop tiling for vectorisation 

31 

for (i=0;i<n;i++){ 

  for (j=1;j<n-1;j++){ 

     a[i][j]=(a[i][j-1] + a[i][j+1])/2.0 ; 

  } 

} 

for (ii=0;ii<n;ii+=B){ 

  for (j=1;j<n-1;j++){     

    for (i=ii;i<ii+B;i++){ 

       a[j][i]=(a[j-1][i] + a[j+1][i])/2.0 ; 

    } 

  } 

} 

j loop won’t vectorise due to dependencies 

i loop will vectorise 

but note change of data layout 



Further cache optimisations 
 

 

• If multiple loop nests process a large array 

• First element of array will be out of cache when second loop nest starts 

• Improving cache use 

• Consider fusing the loop nests 

• Completely: just have one loop nest 

• Partial: have one outer loop, containing multiple inner loops 

• Beware that too much fusion can result in lots of temporaries and cause 

the compiler to run out of registers.... 



Original code Complete fusion Partial fusing 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
 enddo 
enddo 
 
do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=a(i,j)+1   
 enddo 
enddo 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
  a(i,j)=a(i,j)+1   
 enddo 
enddo 

do j = 1, Nj 
 do i = 1, Ni 
  a(i,j)=b(i,j)*2   
 enddo 
 do i = 1, Ni 
  a(i,j)=a(i,j)+1   
 enddo 
enddo 



Further cache optimisations 

• Perhaps cache block before fusing 

• Fuse one or more of the outer blocking loops 

• If multiple subprograms process the array 

• Remove one or more outer loops (or all loops) from subprograms 

• Haul loop into parent routine, pass in index values instead 

• Might want to ensure that compiler is inlining this routine 

• This technique is very useful if you want to use OpenMP/OpenACC 

• Beware of Fortran 

• array syntax often bad 

• a(:,:)=b(:,:)*2 

• a(:,:)=a(:,:)+1 

• compiler unlikely to fuse any loops 

 

 



Original code 

CALL sub1(a,b) 
CALL sub2(a) 
 
SUBROUTINE sub1(a) 
 do j=1,Nj 
  do i=1,Ni 
   a(i,j)=b(i,j)*2   
  enddo 
 enddo 
END SUBROUTINE sub1 

After hauling 

do j = 1, Nj 
 CALL sub1(a,b,j) 
 CALL sub2(a,j) 
enddo 
 
SUBROUTINE sub1(a,j) 
 do i=1,Ni 
  a(i,j)=b(i,j)*2   
 enddo 
END SUBROUTINE sub1 



Optimising for TLB 

• Aim to reuse data on a page 

• i.e. treat similarly to a cache 

 

• Standard-sized pages are 4kB 

• But you can use larger "huge" pages 

• 128kB, 512kB, 2MB,... 64MB 

• Almost always benefit HPC applications 

• regular data accesses 

• huge pages give fewer TLB misses 

• Huge pages can also help communication performance 

 

 

 

 

 



• To use huge pages (see man intro_hugepages) 

• Load chosen craype-hugepages* module 

• See module avail craype-hugepages for list of available 

options 

• 2M or 8M are usually most successful on Cray XC30 

• Compile as before 

• Make sure this module is also loaded in PBS jobscript 

• quick cheat: can load a different-sized hugepages module at 

runtime 

• compile-time module enables hugepages, runtime one determines 

actual size 

 

 



Prefetch 

• Some processors (including Ivy Bridge) prefetch 

automatically 

• Regular access patterns are recognized and cache lines 

fetched in advance. 

• Usually only works for contiguous sequence of cache misses. 

• Processor has a set of stream buffers 

• Each holds address of an active stream 

• Loads to the current block causes the next block to be prefetched 

and the stream address to be updated. 

• Streams are established by series of  cache misses to consecutive 

locations  

 



Using streams 

• To utilize stream hardware use linear access patterns 

where possible 

• Only the order of cache block accesses needs to be linear, not 

each word access. 

• Most loops will require multiple streams 

• If the loop requires more streams than are supported in hardware 

no prefetching will take place for some of the loads. 

• Consider splitting the loop. 

• Prefetching typically cannot cross OS page boundaries 

• huge pages may help 



Pointer aliasing 

• Pointers are variables containing memory addresses. 

• Pointers are useful but can seriously inhibit code performance. 

• Compilers try very hard to reduce memory accesses. 

• Only loading data from memory once. 

• Keep variables in registers and only update memory copy when 

necessary. 

• Pointers could point anywhere, so to be safe compiler will: 

• Reload all values after write through pointer 

• Synchronize all variables with memory before read through pointer  



Pointers and Fortran 

• F77 had no pointers 

• Arguments passed by reference (address) 

• Subroutine arguments are effectively pointers 

• But it is illegal Fortran if two arguments overlap 

• F90/F95 has restricted pointers 

• Pointers can only point at variables declared as a “target” or at the 

target of another pointer 

• Compiler therefore knows more about possible aliasing problems 

• Try to avoid F90 pointers for performance critical data 

structures. 



Pointers and C 

• In C pointers are unrestricted 

• Can therefore seriously inhibit performance 

• Almost impossible to do without pointers 

• malloc requires the use of pointers. 

• Pointers used for call by reference. Alternative is call by value where 
all data is copied! 

• Use the C99 restrict keyword where possible 

• ...or else use compiler flags 
• CCE: -h restrict 

• Intel:  -fnoalias 

• GNU: ?? 

• Explicit use of scalar temporaries may also reduce the problem 


