
ARCHER Single Node

Optimisation
Optimising for the Memory Hierarchy

Slides contributed by Cray and EPCC

Overview

• Motivation

• Types of memory structures

• Reducing memory accesses

• Utilizing Caches

• Prefetching

• Pointer aliasing

Motivation

• Why is memory structure important?

• With current hardware memory access has become the most

significant resource impacting program performance.

• Changing memory structures can have a big impact on code

performance.

• Memory structures are frequently global to the program

• Different code sections communicate via memory structures.

• The programming cost of changing a memory structure can be very

high.

Programmer’s perspective:

• Memory structures are the programmers responsibility

• At best the compiler can add small amounts of padding in limited

circumstances.

• Compilers can (and hopefully will) try to make best use of the

memory structures that you specify (e.g. uni-modular

transformations)

• Changing the memory structures you specify may allow

the compiler to generate better code.

Types of data structure

• Arrays

• Pointer arrays

• records/structures

• Trees and lists

• Objects

Arrays

• Arrays are large blocks of memory indexed by integer

index

• Probably the most common data structure used in HPC

codes

• Good for representing regularly discretised versions of

dense continuous data
𝑓 𝑥, 𝑦, 𝑧 → 𝐹 𝑖 𝑗 [𝑘]

Arrays

• Multi dimensional arrays use multiple indexes (shorthand)
REAL A(100,100,100) REAL A(1000000)

A (i,j,k) = 7.0 A(i+100*j+10000*k) = 7.0

float A[100][100][100]; float A[1000000];

A [i][j][k] = 7.0 A(k+100*j+10000*i) = 7.0

• Address calculation requires computation but still
relatively cheap.

• Compilers have better chance to optimise where
dimension sizes are known at compile time.

Arrays

• Many codes loop over array elements

• Data access pattern is regular and easy to predict

• Good spatial locality achieved by accessing neighbouring

elements on consecutive iterations of the innermost loop.

• Unless loop nest order and array index order match the

access pattern may not be optimal for cache re-use.

• Compiler can potentially address these problems by transforming

the loops.

• But often can do a better job when provided with a more cache-

friendly index order.

do i=1,n

 do j=1,m

 a(i,j)=a(i,j)+b(i,j)

 end do

end do

do j=1,m

 do i=1,m

 a(i,j)=a(i,j)+b(i,j)

 end do

end do

for(i=0;i<N;i++){

 for(j=0;j<M;j++){

 a[i][j]+=b[i][j];

 }

}

for(j=0;j<M;j++){

 for(i=0;i<N;i++){

 a[i][j]+=b[i][j];

 }

}

Bad spatial locality Good spatial locality

Dynamic sized arrays (Fortran)

• Not always possible/desirable to fix array sizes at compile

time

• Fortran allows arrays to be dynamically sized based on subroutine

arguments.

• Address calculation can still be optimised using CSE.

• Size of slowest moving index is not needed in address

computation.

• Fortran actually allows this dimension to be unspecified in

subroutine arguments (assumed size arrays)

Dynamic sized arrays (C)

• C requires array dimensions to be known at compile time.

• However can make slowest dimension variable with

pointers and typedef

typedef float Mat[2][2];

Mat *data =(Mat *) malloc(n*sizeof(Mat));

for(i=0;i<n;i++){

 for(j=0;j<2;j++){

 for(k=0;k<2;k++){

 data[i][j][k] = 12.0;

 }

 }

}

Pointer arrays
• Alternative to multi-dimensional arrays

• Pointer to: array of pointers to: array of pointers to: …. Data

• Note reverse index order to previous example!

float ***data;

data = (float ***) malloc(2*sizeof(float **));

for(i=0;i<2;i++){

 data[i]=(float **) malloc(2*sizeof(float *));

 for(j=0;j<2;j++){

 data[i][j] = (float *) malloc(n*sizeof(float));

 for(k=0;k<n;k++){

 data[i][j][k] = 12.0;

 }

 }

}

Pointer arrays II
• In C the use-syntax is the same as for arrays

• a[I][j][k] = 7.0;

• But actually equivalent to

• p1 = a[I]

• p2= p1[j]

• p2[k] = 7.0

• Advantage

• The “columns” are allocated separately and need not be the same length

• Disadvantages

• Need multiple memory accesses per element access.

• Need more memory to store all the pointers

• Less regular access pattern

• Messy to create/destroy

Records/structures

• Collection of values (of varying types)

• C structs

• F90 user defined types

• Good for representing multi-valued data or sparse/scattered
data.

• Related variables are stored close together may help cache
use.

• If a code section only uses a subset of the values cache use may
suffer.

• Easy to add/re-order members without breaking code as
members are referenced by name not position.

• much harder to remove them.

Structures and the compiler

• Programmer only specifies what a structure contains.

• Compiler chooses layout within the structure.

• In C the compiler usually preserves the order of members

but inserts padding between members if needed to meet

alignment constraints

• i.e. Doubles must be aligned on double-word boundaries.

• Padding reduces cache-line utilisation so order members to reduce

padding.

• Similarly in Fortran but can use SEQUENCE keyword to

force deterministic layout.

Arrays of structs or structs of arrays?

Array of structs

struct Part{

 double x;

 double y;

 double z;

 int index;

 double mass;

}

Part data[numParts];

struct AllParts{

 double x[numParts];

 double y[numParts];

 double z[numParts];

 int index[numParts];

 double mass[numParts];

}

AllParts data;

or

Struct of arrays

Array of structs:

• May have good temporal locality if there is lots of computation on

each struct

• May have poor spatial locality if computations don’t

• Unfavourable for vector loads/stores

• Natural for OO design

Struct of arrays

• May have better spatial locality (use all data on cache line), but

worse temporal locality

• More favourable for vector loads/stores

• Less natural for OO design

Arrays of structs of (short) arrays

• Vector friendly without compromising temporal locality too

much?

• Not at all natural from a design perspective!

struct FourVecParts{

 double x[4];

 double y[4];

 double z[4];

 int index[4];

 double mass[4];

}

FourVecParts data[(numParts+3)/4];

Objects

• Usually implemented much the same as structures

• But objects are opaque

• Language restricts access to the internal data.

• Usually need to use special access functions.

• Much easier to change underlying data structure as this is

only visible to small fraction of the program

• Access functions introduce additional overhead

• Function calls

• Memory copies

• Really only a problem for small low-level objects

Trees/lists

• Structures/Objects can contain pointers to other
structures.
• Can construct trees and lists etc.

• Very flexible and can grow dynamically
• Same problems as pointer arrays.

• Additional memory accesses to navigate data

• Additional storage to store pointers

• Access pattern is very hard to predict.

• Limited navigation
• Can only follow access pattern supported by pointer structure

• e.g. cannot jump to middle of a list without traversing half the
nodes.

High level data structures

• Many modern languages have built in-support for high

level data structures such as

• Lists

• Trees

• Sets

• Maps

• Etc.

• May be available either as built-in data-types or as

standard libraries.

• Have the same intrinsic advantages/disadvantages as home made

equivalents but typically better tested and optimised.

What can go wrong

• Poor cache/page use

• Lack of spatial locality

• Lack of temporal locality

• Unnecessary memory accesses

• pointer chasing

• array temporaries

• Aliasing problems

• Use of pointers can inhibit code optimisation

Reducing memory accesses

• Memory accesses are often the most important limiting

factor for code performance.

• Many older codes were written when memory access was relatively

cheap.

• Things to look for:

• Unnecessary pointer chasing

• pointer arrays that could be simple arrays

• linked lists that could be arrays.

• Unnecessary temporary arrays.

• Tables of values that would be cheap to re-calculate.

Utilizing caches

• Want to avoid cache conflicts

• This happens when too much related data maps to the same cache

set.

• Arrays or array dimensions proportional to (cache-size/set-size)

can cause this.

• Rarely a problem with 8- and 16-way associative caches on XC30

• Lots of accesses in a loop to arrays with power-of-2 dimensions

might still be bad

• Can pad arrays to avoid this.

Utilizing caches II

• Want to use all of the data in a cache line

• loading unwanted values is a waste of memory bandwidth.

• structures are good for this

• Or loop fastest over the corresponding index of an array.

• Place variables that are used together close together

• Also have to worry about alignment with cache block boundaries.

• Avoid “gaps” in structures

• In C structures may contain gaps to ensure the address of each

variable is aligned with its size.

Bad Cache Alignment
CrayPAT profiling with export PAT_RT_HWPC=2 (L1 and L2 metrics)

Time% 0.2%

Time 0.000003

Calls 1

PAPI_L1_DCA 455.433M/sec 1367 ops

DC_L2_REFILL_MOESI 49.641M/sec 149 ops

DC_SYS_REFILL_MOESI 0.666M/sec 2 ops

BU_L2_REQ_DC 74.628M/sec 224 req

User time 0.000 secs 7804 cycles

Utilization rate 97.9%

L1 Data cache misses 50.308M/sec 151 misses

LD & ST per D1 miss 9.05 ops/miss

D1 cache hit ratio 89.0%

LD & ST per D2 miss 683.50 ops/miss

D2 cache hit ratio 99.1%

L2 cache hit ratio 98.7%

Memory to D1 refill 0.666M/sec 2 lines

Memory to D1 bandwidth 40.669MB/sec 128 bytes

L2 to Dcache bandwidth 3029.859MB/sec 9536 bytes

cf: 8

Good Cache Alignment

Time% 0.1%

Time 0.000002

Calls 1

PAPI_L1_DCA 689.986M/sec 1333 ops

DC_L2_REFILL_MOESI 33.645M/sec 65 ops

DC_SYS_REFILL_MOESI 0 ops

BU_L2_REQ_DC 34.163M/sec 66 req

User time 0.000 secs 5023 cycles

Utilization rate 95.1%

L1 Data cache misses 33.645M/sec 65 misses

LD & ST per D1 miss 20.51 ops/miss

D1 cache hit ratio 95.1%

LD & ST per D2 miss 1333.00 ops/miss

D2 cache hit ratio 100.0%

L2 cache hit ratio 100.0%

Memory to D1 refill 0 lines

Memory to D1 bandwidth 0 bytes

L2 to Dcache bandwidth 2053.542MB/sec 4160 bytes

Cache blocking

• A combination of:

• strip mining (also called loop blocking, loop tiling...)

• loop interchange

• Designed to increase data reuse:

• temporal reuse: reuse array elements already referenced

• spatial reuse: good use of cache lines

• Many ways to block any given loop nest

• Which loops should be blocked?

• What block size(s) will work best?

• Analysis can reveal which ways are beneficial

• How big is your cache?

• L1 is 32kB on Ivybridge.

• How many cache lines can it hold?

• each line typically 64B, so

• How many cache lines are needed per loop iteration?

• ...

• But trial-and-error is probably faster

• or autotuning of the code

Loop tiling

30

for (i=0;i<n;i++){

 for (j=0;j<n;j++){

 a[i][j]=b[j][i];

 }

}

for (ii=0;ii<n;ii+=B){

 for (jj=0;jj<n;jj+=B){

 for (i=ii;i<ii+B;i++){

 for (j=jj;j<jj+B;j++){

 a[i][j]=b[j][i];

 }

 }

 }

}

j
i

j

i

Loop tiling for vectorisation

31

for (i=0;i<n;i++){

 for (j=1;j<n-1;j++){

 a[i][j]=(a[i][j-1] + a[i][j+1])/2.0 ;

 }

}

for (ii=0;ii<n;ii+=B){

 for (j=1;j<n-1;j++){

 for (i=ii;i<ii+B;i++){

 a[j][i]=(a[j-1][i] + a[j+1][i])/2.0 ;

 }

 }

}

j loop won’t vectorise due to dependencies

i loop will vectorise

but note change of data layout

Further cache optimisations

• If multiple loop nests process a large array

• First element of array will be out of cache when second loop nest starts

• Improving cache use

• Consider fusing the loop nests

• Completely: just have one loop nest

• Partial: have one outer loop, containing multiple inner loops

• Beware that too much fusion can result in lots of temporaries and cause

the compiler to run out of registers....

Original code Complete fusion Partial fusing

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=a(i,j)+1
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 a(i,j)=a(i,j)+1
 enddo
enddo

do j = 1, Nj
 do i = 1, Ni
 a(i,j)=b(i,j)*2
 enddo
 do i = 1, Ni
 a(i,j)=a(i,j)+1
 enddo
enddo

Further cache optimisations

• Perhaps cache block before fusing

• Fuse one or more of the outer blocking loops

• If multiple subprograms process the array

• Remove one or more outer loops (or all loops) from subprograms

• Haul loop into parent routine, pass in index values instead

• Might want to ensure that compiler is inlining this routine

• This technique is very useful if you want to use OpenMP/OpenACC

• Beware of Fortran

• array syntax often bad

• a(:,:)=b(:,:)*2

• a(:,:)=a(:,:)+1

• compiler unlikely to fuse any loops

Original code

CALL sub1(a,b)
CALL sub2(a)

SUBROUTINE sub1(a)
 do j=1,Nj
 do i=1,Ni
 a(i,j)=b(i,j)*2
 enddo
 enddo
END SUBROUTINE sub1

After hauling

do j = 1, Nj
 CALL sub1(a,b,j)
 CALL sub2(a,j)
enddo

SUBROUTINE sub1(a,j)
 do i=1,Ni
 a(i,j)=b(i,j)*2
 enddo
END SUBROUTINE sub1

Optimising for TLB

• Aim to reuse data on a page

• i.e. treat similarly to a cache

• Standard-sized pages are 4kB

• But you can use larger "huge" pages

• 128kB, 512kB, 2MB,... 64MB

• Almost always benefit HPC applications

• regular data accesses

• huge pages give fewer TLB misses

• Huge pages can also help communication performance

• To use huge pages (see man intro_hugepages)

• Load chosen craype-hugepages* module

• See module avail craype-hugepages for list of available

options

• 2M or 8M are usually most successful on Cray XC30

• Compile as before

• Make sure this module is also loaded in PBS jobscript

• quick cheat: can load a different-sized hugepages module at

runtime

• compile-time module enables hugepages, runtime one determines

actual size

Prefetch

• Some processors (including Ivy Bridge) prefetch

automatically

• Regular access patterns are recognized and cache lines

fetched in advance.

• Usually only works for contiguous sequence of cache misses.

• Processor has a set of stream buffers

• Each holds address of an active stream

• Loads to the current block causes the next block to be prefetched

and the stream address to be updated.

• Streams are established by series of cache misses to consecutive

locations

Using streams

• To utilize stream hardware use linear access patterns

where possible

• Only the order of cache block accesses needs to be linear, not

each word access.

• Most loops will require multiple streams

• If the loop requires more streams than are supported in hardware

no prefetching will take place for some of the loads.

• Consider splitting the loop.

• Prefetching typically cannot cross OS page boundaries

• huge pages may help

Pointer aliasing

• Pointers are variables containing memory addresses.

• Pointers are useful but can seriously inhibit code performance.

• Compilers try very hard to reduce memory accesses.

• Only loading data from memory once.

• Keep variables in registers and only update memory copy when

necessary.

• Pointers could point anywhere, so to be safe compiler will:

• Reload all values after write through pointer

• Synchronize all variables with memory before read through pointer

Pointers and Fortran

• F77 had no pointers

• Arguments passed by reference (address)

• Subroutine arguments are effectively pointers

• But it is illegal Fortran if two arguments overlap

• F90/F95 has restricted pointers

• Pointers can only point at variables declared as a “target” or at the

target of another pointer

• Compiler therefore knows more about possible aliasing problems

• Try to avoid F90 pointers for performance critical data

structures.

Pointers and C

• In C pointers are unrestricted

• Can therefore seriously inhibit performance

• Almost impossible to do without pointers

• malloc requires the use of pointers.

• Pointers used for call by reference. Alternative is call by value where
all data is copied!

• Use the C99 restrict keyword where possible

• ...or else use compiler flags
• CCE: -h restrict

• Intel: -fnoalias

• GNU: ??

• Explicit use of scalar temporaries may also reduce the problem

