
Advanced OpenMP

OpenMP Basics

2

Parallel region

• The parallel region is the basic parallel construct in OpenMP.

• A parallel region defines a section of a program.

• Program begins execution on a single thread (the master thread).

• When the first parallel region is encountered, the master thread
creates a team of threads (fork/join model).

• Every thread executes the statements which are inside the parallel
region

• At the end of the parallel region, the master thread waits for the
other threads to finish, and continues executing the next statements

3

Parallel region

Sequential part

Sequential part

Sequential part

Parallel region

Parallel region

4

Parallel region directive

• Code within a parallel region is executed by all threads.

• Syntax:

Fortran: !$OMP PARALLEL

block

!$OMP END PARALLEL

C/C++: #pragma omp parallel

{

block

}

5

Parallel region directive (cont)

Example:

fred();

#pragma omp parallel

{

billy();

}

daisy();

6

Useful functions

• Often useful to find out number of threads being used.

Fortran:
USE OMP_LIB

INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++:
#include <omp.h>

int omp_get_num_threads(void);

• Important note: returns 1 if called outside parallel region!

7

Useful functions (cont)

• Also useful to find out number of the executing thread.

Fortran:

USE OMP_LIB

INTEGER FUNCTION OMP_GET_THREAD_NUM()

C/C++:

#include <omp.h>

int omp_get_thread_num(void)

• Takes values between 0 and OMP_GET_NUM_THREADS()- 1

8

Clauses

• Specify additional information in the parallel region directive through
clauses:

Fortran : !$OMP PARALLEL [clauses]

C/C++: #pragma omp parallel [clauses]

• Clauses are comma or space separated in Fortran, space separated in
C/C++.

9

Shared and private variables

• Inside a parallel region, variables can be either shared (all threads see
same copy) or private (each thread has its own copy).

• Shared, private and default clauses

Fortran: SHARED(list)

PRIVATE(list)

DEFAULT(SHARED|PRIVATE|NONE)

C/C++: shared(list)

private(list)

default(shared|none)

Shared and private (cont.)

• On entry to a parallel region, private variables are
uninitialised.

• Variables declared inside the scope of the parallel region are
automatically private.

• After the parallel region ends the original variable is
unaffected by any changes to private copies.

• Not specifying a DEFAULT clause is the same as specifying
DEFAULT(SHARED)
– Danger!
– Always use DEFAULT(NONE)

10

11

Shared and private (cont)

Example: each thread initialises its own column of a shared array:

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

myid = omp_get_thread_num() + 1

do i = 1,n

a(i,myid) = 1.0

end do

!$OMP END PARALLEL

0 2 31

i

12

Multi-line directives

• Fortran: fixed source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID),

!$OMP& SHARED(A,N)

• Fortran: free source form

!$OMP PARALLEL DEFAULT(NONE),PRIVATE(I,MYID), &

!$OMP SHARED(A,N)

• C/C++:
#pragma omp parallel default(none) \
private(i,myid) shared(a,n)

13

Initialising private variables

• Private variables are uninitialised at the start of the parallel region.

• If we wish to initialise them, we use the FIRSTPRIVATE clause:

Fortran: FIRSTPRIVATE(list)

C/C++: firstprivate(list)

• Note: use cases for this are uncommon!

14

Initialising private variables (cont)

Example:

b = 23.0;

.

#pragma omp parallel firstprivate(b), private(i,myid)

{

myid = omp_get_thread_num();

for (i=0; i<n; i++){

b += c[myid][i];

}

c[myid][n] = b;

}

15

Reductions

• A reduction produces a single value from associative operations
such as addition, multiplication,max, min, and, or.

• Would like each thread to reduce into a private copy, then reduce
all these to give final result.

• Use REDUCTION clause:

Fortran: REDUCTION(op:list)

C/C++: reduction(op:list)

• Can have reduction arrays in Fortran, but not in C/C++

16

Reductions (cont.)

Example:

b = 10

!$OMP PARALLEL REDUCTION(+:b),

!$OMP& PRIVATE(I,MYID)

myid = omp_get_thread_num() + 1

do i = 1,n

b = b + c(i,myid)

end do

!$OMP END PARALLEL

a = b

Each thread gets a private copy

of b, initialised to 0

All accesses inside the parallel
region are to the private copies

At the end of the parallel region, all
the private copies are added into the
original variable

Value in original variable is saved

17

Work sharing directives

• Directives which appear inside a parallel region and indicate how work
should be shared out between threads

– Parallel do/for loops
– Single directive
– Master directive

18

Parallel do loops

• Loops are the most common source of parallelism in most codes. Parallel
loop directives are therefore very important!

• A parallel do/for loop divides up the iterations of the loop between
threads.

• The loop directive appears inside a parallel region and indicates that the
work should be shared out between threads, instead of replicated

• There is a synchronisation point at the end of the loop: all threads must
finish their iterations before any thread can proceed

19

Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]

do loop

[!$OMP END DO]

C/C++:

#pragma omp for [clauses]

for loop

20

Restrictions in C/C++

• Because the for loop in C is a general while loop, there are restrictions on
the form it can take.

• It has to have determinable trip count - it must be of the form:

for (var = a; var logical-op b; incr-exp)

where logical-op is one of <, <=, >, >=

and incr-exp is var = var +/- incr or semantic

equivalents such as var++.

Also cannot modify var within the loop body.

21

Parallel loops (example)

Example:
!$OMP PARALLEL

!$OMP DO

do i=1,n

b(i) = (a(i)-a(i-1))*0.5

end do

!$OMP END DO

!$OMP END PARALLEL

#pragma omp parallel

{

#pragma omp for

for (int i=0;i<n;i++){

b[i] = (a[i]*a[i-1])*0.5;

}

}

22

Parallel DO/FOR directive

• This construct is so common that there is a shorthand form which
combines parallel region and DO/FOR directives:

Fortran:

!$OMP PARALLEL DO [clauses]

do loop

[!$OMP END PARALLEL DO]

C/C++:

#pragma omp parallel for [clauses]

for loop

23

Clauses

• DO/FOR directive can take PRIVATE , FIRSTPRIVATE and
REDUCTION clauses which refer to the scope of the loop.

• Note that the parallel loop index variable is PRIVATE by
default
– other loop indices are private by default in Fortran, but not

in C.

• PARALLEL DO/FOR directive can take all clauses available
for PARALLEL directive.

• Beware! PARALLEL DO/FOR is not the same as DO/FOR
or the same as PARALLEL

24

Parallel do/for loops (cont)

• With no additional clauses, the DO/FOR directive will partition the
iterations as equally as possible between the threads.

• However, this is implementation dependent, and there is still some
ambiguity:

e.g. 7 iterations, 3 threads. Could partition as 3+3+1 or 3+2+2

25

SCHEDULE clause

• The SCHEDULE clause gives a variety of options for specifying which
loops iterations are executed by which thread.

• Syntax:

Fortran: SCHEDULE (kind[, chunksize])

C/C++: schedule (kind[, chunksize])

where kind is one of

STATIC, DYNAMIC, GUIDED, AUTO or RUNTIME

and chunksize is an integer expression with positive value.

• E.g. !$OMP DO SCHEDULE(DYNAMIC,4)

26

STATIC schedule

• With no chunksize specified, the iteration space is divided into
(approximately) equal chunks, and one chunk is assigned to each thread
in order (block schedule).

• If chunksize is specified, the iteration space is divided into chunks, each
of chunksize iterations, and the chunks are assigned cyclically to each
thread in order (block cyclic schedule)

27

STATIC schedule

28

DYNAMIC schedule

• DYNAMIC schedule divides the iteration space up into chunks of size
chunksize, and assigns them to threads on a first-come-first-served
basis.

• i.e. as a thread finish a chunk, it is assigned the next chunk in the list.

• When no chunksize is specified, it defaults to 1.

29

GUIDED schedule

• GUIDED schedule is similar to DYNAMIC, but the chunks start off large
and get smaller exponentially.

• The size of the next chunk is proportional to the number of remaining
iterations divided by the number of threads.

• The chunksize specifies the minimum size of the chunks.

• When no chunksize is specified it defaults to 1.

30

DYNAMIC and GUIDED schedules

31

AUTO schedule

• Lets the runtime have full freedom to choose its own
assignment of iterations to threads

• If the parallel loop is executed many times, the runtime can
evolve a good schedule which has good load balance and
low overheads.

32

Choosing a schedule

When to use which schedule?

• STATIC best for load balanced loops - least overhead.
• STATIC,n good for loops with mild or smooth load imbalance, but can

induce overheads.
• DYNAMIC useful if iterations have widely varying loads, but ruins data

locality.
• GUIDED often less expensive than DYNAMIC, but beware of loops

where the first iterations are the most expensive!
• AUTO may be useful if the loop is executed many times over

33

SINGLE directive

• Indicates that a block of code is to be executed by a single thread only.

• The first thread to reach the SINGLE directive will execute the block

• There is a synchronisation point at the end of the block: all the other
threads wait until block has been executed.

34

SINGLE directive (cont)

Syntax:

Fortran:

!$OMP SINGLE [clauses]

block

!$OMP END SINGLE

C/C++:

#pragma omp single [clauses]

structured block

35

SINGLE directive (cont)

Example:

#pragma omp parallel

{

setup(x);

#pragma omp single

{

input(y);

}

work(x,y);

}

36

SINGLE directive (cont)

• SINGLE directive can take PRIVATE and FIRSTPRIVATE clauses.

• Directive must contain a structured block: cannot branch into or out of it.

37

MASTER directive

• Indicates that a block of code should be executed by the master thread
(thread 0) only.

• There is no synchronisation at the end of the block: other threads skip the
block and continue executing: N.B. different from SINGLE in this respect.

38

MASTER directive (cont)

Syntax:

Fortran:

!$OMP MASTER

block

!$OMP END MASTER

C/C++:

#pragma omp master

structured block

39

BARRIER directive

• No thread can proceed past a barrier until all the other threads have
arrived.

• Note that there is an implicit barrier at the end of DO/FOR, SECTIONS
and SINGLE directives.

• Syntax:

Fortran: !$OMP BARRIER

C/C++: #pragma omp barrier

• Either all threads or none must encounter the barrier: otherwise
DEADLOCK!!

40

BARRIER directive (cont)

Example:
!$OMP PARALLEL PRIVATE(I,MYID,NEIGHB)

myid = omp_get_thread_num()

neighb = myid - 1

if (myid.eq.0) neighb = omp_get_num_threads()-1

...

a(myid) = a(myid)*3.5

!$OMP BARRIER

b(myid) = a(neighb) + c

...

!$OMP END PARALLEL

• Barrier required to force synchronisation on a

41

Critical sections

• A critical section is a block of code which can be executed by only one
thread at a time.

• Can be used to protect updates to shared variables.

• The CRITICAL directive allows critical sections to be named.

• If one thread is in a critical section with a given name, no other thread
may be in a critical section with the same name (though they can be in

critical sections with other names).

42

CRITICAL directive

• Syntax:

Fortran: !$OMP CRITICAL [(name)]

block

!$OMP END CRITICAL [(name)]

C/C++: #pragma omp critical [(name)]

structured block

• In Fortran, the names on the directive pair must match.

• If the name is omitted, a null name is assumed (all unnamed critical
sections effectively have the same null name).

43

CRITICAL directive (cont)

Example: pushing and popping a task stack

!$OMP PARALLEL SHARED(STACK),PRIVATE(INEXT,INEW)

...

!$OMP CRITICAL (STACKPROT)

inext = getnext(stack)

!$OMP END CRITICAL (STACKPROT)

call work(inext,inew)

!$OMP CRITICAL (STACKPROT)

if (inew .gt. 0) call putnew(inew,stack)

!$OMP END CRITICAL (STACKPROT)

...

!$OMP END PARALLEL

44

ATOMIC directive

• Used to protect a single update to a shared variable.

• Applies only to a single statement.

• Syntax:

Fortran: !$OMP ATOMIC

statement

where statement must have one of these forms:

x = x op expr, x = expr op x, x = intr (x, expr) or

x = intr(expr, x)

op is one of +, *, -, /, .and., .or., .eqv., or .neqv.

intr is one of MAX, MIN, IAND, IOR or IEOR

45

ATOMIC directive (cont)

C/C++: #pragma omp atomic

statement

where statement must have one of the forms:

x binop = expr, x++, ++x, x--, or --x

and binop is one of +, *, -, /, &, ^, <<, or >>

• Note that the evaluation of expr is not atomic.

• May be more efficient than using CRITICAL directives, e.g. if
different array elements can be protected separately.

• No interaction with CRITICAL directives

46

ATOMIC directive (cont)

Example (compute degree of each vertex in a graph):

#pragma omp parallel for

for (j=0; j<nedges; j++){

#pragma omp atomic

degree[edge[j].vertex1]++;

#pragma omp atomic

degree[edge[j].vertex2]++;

}

47

Lock routines

• Occasionally we may require more flexibility than is provided by
CRITICAL directive.

• A lock is a special variable that may be set by a thread. No other thread
may set the lock until the thread which set the lock has unset it.

• Setting a lock can either be blocking or non-blocking.

• A lock must be initialised before it is used, and may be destroyed when it
is not longer required.

• Lock variables should not be used for any other purpose.

48

Lock routines - syntax

Fortran:
USE OMP_LIB

SUBROUTINE OMP_INIT_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_SET_LOCK(OMP_LOCK_KIND var)

LOGICAL FUNCTION OMP_TEST_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_UNSET_LOCK(OMP_LOCK_KIND var)

SUBROUTINE OMP_DESTROY_LOCK(OMP_LOCK_KIND var)

var should be an INTEGER of the same size as addresses (e.g. INTEGER*8 on a
64-bit machine)

OMP_LIB defines OMP_LOCK_KIND

49

Lock routines - syntax

C/C++:

#include <omp.h>

void omp_init_lock(omp_lock_t *lock);

void omp_set_lock(omp_lock_t *lock);

int omp_test_lock(omp_lock_t *lock);

void omp_unset_lock(omp_lock_t *lock);

void omp_destroy_lock(omp_lock_t *lock);

There are also nestable lock routines which allow the same thread to set a
lock multiple times before unsetting it the same number of times.

50

Lock example

Example (compute degree of each vertex in a graph):

for (i=0; i<nvertexes; i++){

omp_init_lock(lockvar[i]);

}

#pragma omp parallel for

for (j=0; j<nedges; j++){

omp_set_lock(lockvar[edge[j].vertex1]);

degree[edge[j].vertex1]++;

omp_unset_lock(lockvar[edge[j].vertex1]);

omp_set_lock(lockvar[edge[j].vertex2]);

degree[edge[j].vertex2]++;

omp_unset_lock(lockvar[edge[j].vertex2]);

}

51

Brief history of OpenMP

• Historical lack of standardisation in shared memory directives.
– each hardware vendor provided a different API
– mainly directive based
– almost all for Fortran
– hard to write portable code

• OpenMP forum set up by Digital, IBM, Intel, KAI and SGI. Now includes
most major vendors (and some academic organisations, including
EPCC).

• OpenMP Fortran standard released October 1997, minor revision (1.1)
in November 1999. Major revision (2.0) in November 2000.

• OpenMP C/C++ standard released October 1998. Major revision (2.0)
in March 2002.

52

History (cont.)

• Combined OpenMP Fortran/C/C++ standard (2.5) released in May 2005.
– no new features, but extensive rewriting and clarification

• Version 3.0 released in May 2008
– new features, including tasks, better support for loop parallelism and

nested parallelism
• Version 3.1 released in June 2011

– corrections and some minor new features
– most current compilers support at least this

• Version 4.0 released in July 2013
– accelerator offloading, thread affinity, more task support,...
– now in most implementations

• Version 4.5 released November 2015
– corrections and a few new features
– no full implementations yet?

53

Exercise

Area of the Mandelbrot set

• Aim: introduction to using parallel regions.

• Estimate the area of the Mandelbrot set by Monte Carlo sampling.
– Generate a grid of complex numbers in a box surrounding the set
– Test each number to see if it is in the set or not.
– Ratio of points inside to total number of points gives an estimate of

the area.
– Testing of points is independent - parallelise with a parallel region!

