
OPENMP PERFORMANCE

A common scenario.....

“So I wrote my OpenMP program, and I checked it gave the
right answers, so I ran some timing tests, and the speedup
was, well, a bit disappointing really. Now what?”.

Most of us have probably been here.

Where did my performance go?

It disappeared into overheads.....

2

The six (and a half) evils...
• There are six main sources of overhead in OpenMP programs:

• sequential code
• idle threads
• synchronisation
• scheduling
• communication
• hardware resource contention

• and another minor one:
• compiler (non-)optimisation

• Let’s take a look at each of them and discuss ways of avoiding
them.

3

Sequential code
• In OpenMP, all code outside parallel regions, or inside

MASTER and SINGLE directives is sequential.

• Time spent in sequential code will limit performance
(that’s Amdahl’s Law).

• If 20% of the original execution time is not parallelised, I
can never get more that 5x speedup.

• Need to find ways of parallelising it!

4

Idle threads
• Some threads finish a piece of computation before others, and have to wait

for others to catch up.

• e.g. threads sit idle in a barrier at the end of a parallel loop or parallel
region.

5

Time

Avoiding load imbalance

• It’s a parallel loop, experiment with different schedule kinds and
chunksizes
• can use SCHEDULE(RUNTIME) to avoid recompilation.

• For more irregular computations, using tasks can be helpful
• runtime takes care of the load balancing

• Note that it’s not always safe to assume that two threads doing the
same number of computations will take the same time.
• the time taken to load/store data may be different, depending on if/where

it’s cached.

6

Critical sections
• Threads can be idle waiting to access a critical section

• In OpenMP, critical regions, atomics or lock routines

7

Time

Avoiding waiting
• Minimise the time spent in the critical section

• OpenMP critical regions are a global lock
• but can use critical directives with different names

• Use atomics if possible
• allows more optimisation, e.g. concurrent updates to different array

elements

• ... or use multiple locks

8

Synchronisation
• Every time we synchronise threads, there is some overhead,

even if the threads are never idle.
• threads must communicate somehow.....

• Many OpenMP codes are full of (implicit) barriers
• end of parallel regions, parallel loops

• Barriers can be very expensive
• depends on no. of threads, runtime, hardware, but typically 1000s to

10000s of clock cycles.
• Criticals, atomics and locks are not free either.
• ...nor is creating or executing a task

9

Avoiding synchronisation overheads
• Parallelise at the outermost level possible.

• Minimise the frequency of barriers
• May require reordering of loops and/or array indices.

• Careful use of NOWAIT clauses.
• easy to introduce race conditions by removing barriers that are

required for correctness

• Atomics may have less overhead that critical or locks
• quality of implementation problem

10

Scheduling
• If we create computational tasks, and rely on the runtime

to assign these to threads, then we incur some overheads
• some of this is actually internal synchronisation in the runtime

• Examples: non-static loop schedules, task constructs

• Need to get granularity of tasks right
• too big may result in idle threads
• too small results in scheduling overheads

11

#pragma omp parallel for schedule(dynamic,1)
for (i=0;i<10000000;i++){
.......
}

Communication
• On shared memory systems, communication is “disguised” as

increased memory access costs - it takes longer to access
data in main memory or another processors cache than it
does from local cache.

• Memory accesses are expensive! (O(100) cycles for a main
memory access compared to 1-3 cycles for a flop).

• Communication between processors takes place via the
cache coherency mechanism.

• Unlike in message-passing, communication is fine –grained
and spread throughout the program
• much harder to analyse or monitor.

12

Cache coherency in a nutshell
• If a thread writes a data item, it gets an exclusive copy of the

data in it’s local cache

• Any copies of the data item in other caches get invalidated to
avoid reading of out-of-date values.

• Subsequent accesses to the data item by other threads must
get the data from the exclusive copy
• this takes time as it requires moving data from one cache to another

(Caveat : this is a highly simplified description!)

13

Data affinity
• Data will be cached on the processors which are accessing it,

so we must reuse cached data as much as possible.
• Need to write code with good data affinity - ensure that the

same thread accesses the same subset of program data as
much as possible.

• Try to make these subsets large, contiguous chunks of data
• Also important to prevent threads migrating between cores

while the code is running.
• use export OMP_PROC_BIND=true

14

Data affinity example 1
#pragma omp parallel for schedule(static)
for (i=0;i<n;i++){

for (j=0; j<n; j++){
a[j][i] = i+j;

}
}

#pragma omp parallel for schedule(static,16)
for (i=0;i<n;i++){

for (j=0; j<i; j++){
b[j] += a[j][i];

}
}

15

Different access patterns
for a will result in extra

communication

Balanced loop

Unbalanced loop

Data affinity example 2
#pragma omp parallel for
for (i=0;i<n;i++){

... = a[i];
}

for (i=0;i<n;i++){
a[i] = 23;

}

#pragma omp parallel for
for (i=0;i<n;i++){

... = a[i];
}

16

a will be spread across
multiple caches

Sequential code!
a will be gathered into

one cache

a will be spread across
multiple caches again

Data affinity (cont.)

• Sequential code will take longer with multiple threads than it
does on one thread, due to the cache invalidations

• Second parallel region will scale badly due to additional cache
misses

• May need to parallelise code which does not appear to take
much time in the sequential program!

17

Data affinity: NUMA effects
• Very evil!
• On multi-socket systems, the location of data in main memory

is important.
• Note: all current multi-socket x86 systems are NUMA!

• OpenMP has no support for controlling this.
• Common default policy for the OS is to place data on the

processor which first accesses it (first touch policy).
• For OpenMP programs this can be the worst possible option

• data is initialised in the master thread, so it is all allocated one node
• having all threads accessing data on the same node becomes a

bottleneck

18

Avoiding NUMA effects
• In some OSs, there are options to control data placement

• e.g. in Linux, can use numactl change policy to round-robin

• First touch policy can be used to control data placement
indirectly by parallelising data initialisation
• even though this may not seem worthwhile in view of the insignificant

time it takes in the sequential code
• Don’t have to get the distribution exactly right

• some distribution is usually much better than none at all.
• Remember that the allocation is done on an OS page basis

• typically 4KB to 16KB
• beware of using large pages!

19

False sharing
• Very very evil!

• The units of data on which the cache coherency
operations are done (typically 64 or 128 bytes) are always
bigger than a word (typically 4 or 8 bytes).

• Different threads writing to neighbouring words in memory
may cause cache invalidations!
• still a problem if one thread is writing and others reading

20

False sharing patterns
• Worst cases occur where different threads repeatedly write neighbouring

array elements.

count[omp_get_thread_num()]++;

21

#pragma omp parallel for schedule(static,1)
for (i=0;i<n;i++){

for (j=0; j<n; j++){
b[i] += a[j][i];

}
}

Hardware resource contention
• The design of shared memory hardware is often a cost vs.

performance trade-off.

• There are shared resources which, if all cores try to access at the
same time, do not scale
• or, put another way, an application running on a single code can access

more than its fair share of the resources
• In particular, cores (and hence OpenMP threads) can contend for:

• memory bandwidth
• cache capacity
• functional units (if using SMT)
• power and cooling

22

Memory bandwidth
• Codes which are very bandwidth-hungry will not scale linearly

on most shared-memory hardware.

• Try to reduce bandwidth demands by improving locality, and
hence the re-use of data in caches
• will benefit the sequential performance as well.

23

Memory bandwidth example
• Intel Ivy Bridge processor

• 12 cores
• L1 and L2 caches per core
• 30 MB shared L3 cache
• Cray compiler

#pragma omp parallel for reduction(+:sum)
for (i=0;i<n;i++){

sum += a[i];
}

24

25

Death by synchronisation!

L3 cache BW contention

Memory BW contention

Cache space contention

• On systems where cores share some level of cache (e.g. L3),
codes may not appear to scale well because a single core can
access the whole of the shared cache.

• Beware of tuning block sizes for a single thread, and then
running multithreaded code
• each thread will try to utilise the whole cache

26

Hardware threads
• When using hardware threads, OpenMP threads running on

the same core contend for functional units as well as cache
space and memory bandwidth.

• Tends to benefit codes where threads are idle because they
are waiting on memory references
• code with non-contiguous/random memory access patterns

• Codes which are bandwidth-hungry, or which saturate the
floating point units (e.g. dense linear algebra) may not benefit
from this
• may actually run slower

27

Oversubscription
• Running more threads than hardware execution units

(cores or hardware threads) is generally a bad idea.

• OS tries to give each thread a fair share of execution units

• Cost of stopping one thread and starting another is high
(1000s of clock cycles)

• Ruins data locality!

28

Power and Cooling
• Some modern processors have dynamic CPU clocking

features
• e.g. Intel’s TurboBoost

• If only a few cores are active, the clock frequency is
dynamically increased to provide better performance
• Note: doesn’t help bandwidth-bound code!

• With more cores active, this can’t be done because the
power/cooling constraints would be exceeded.

• Runs with small numbers of threads may go faster
• Results in less than ideal speedup

29

Compiler (non-)optimisation
• Very rarely, the addition of OpenMP directives can inhibit the compiler

from performing sequential optimisations.

• Symptoms: 1-thread parallel code has longer execution time than
sequential code.

• Can be hard to find a workaround

• Can sometimes be cured by making shared data private, or making
local copies of variables.

30

Minimising overheads
My code is giving poor speedup. I don’t know why.

What do I do now?
1.

• Say “OpenMP is a heap of junk”.
• Give up.

2.
• Try to classify and localise the sources of overhead.
• What type of problem is it, and where in the code does it occur?
• Use any available tools to help you (e.g. timers, hardware counters,

profiling tools).
• Fix problems which are responsible for large overheads first.
• Iterate.

31

Profilers
• Standard profilers (gprof, IDE profilers) can be confusing

• they typically accumulate the time spent in functions across all threads.
• You can get a lot out of using timers (omp_get_wtime())
• Add timers round every parallel region, and round the whole

code.
• work out which parallel regions have the worst speedup
• don’t assume the time spent outside parallel regions is independent of

the number of threads.

Performance tools
• Vampir

• timeline traces can be very useful for visualising load balance
• Intel Vtune
• Oracle Studio Performance Analyzer
• CrayPAT
• Scalasca

• breaks down overheads into different categories
• ParaTools Threadspotter

• very good for finding cache/memory problems, including false sharing.

Exercise
• Profile and optimise a not-very-efficient version of the MD

code.

• Separate source files:

cp /home/z01/shared/tpo.tar .
tar xvf tpo.tar

34

