
OPENMP PERFORMANCE



A common scenario.....

“So I wrote my OpenMP program, and I checked it gave the 
right answers, so I ran some timing tests, and the speedup 
was, well, a bit disappointing really. Now what?”.

Most of us have probably been here. 

Where did my performance go? 

It disappeared into overheads.....
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The six (and a half) evils...
• There are six main sources of overhead in OpenMP programs:

• sequential code 
• idle threads
• synchronisation
• scheduling
• communication
• hardware resource contention

• and another minor one:
• compiler (non-)optimisation

• Let’s take a look at each of them and discuss ways of avoiding 
them. 
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Sequential code
• In OpenMP, all code outside parallel regions, or inside 

MASTER and SINGLE directives is sequential.

• Time spent in sequential code will limit performance 
(that’s Amdahl’s Law). 

• If 20% of the original execution time is not parallelised, I 
can never get more that 5x speedup. 

• Need to find ways of parallelising it!
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Idle threads
• Some threads finish a piece of computation before others, and have to wait 

for others to catch up.

• e.g. threads sit idle in a barrier at the end of a parallel loop or parallel 
region. 
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Avoiding load imbalance

• It’s a parallel loop, experiment with different schedule kinds and 
chunksizes  
• can use SCHEDULE(RUNTIME) to avoid recompilation.

• For more irregular computations, using tasks can be helpful
• runtime takes care of the load balancing 

• Note that it’s not always safe to assume that two threads doing the 
same number of computations will take the same time.
• the time taken to load/store data may be different, depending on if/where 

it’s cached.
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Critical sections
• Threads can be idle waiting to access a critical section

• In OpenMP, critical regions, atomics or lock routines
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Avoiding waiting
• Minimise the time spent in the critical section

• OpenMP critical regions are a global lock
• but can use critical directives with different names

• Use atomics if possible
• allows more optimisation, e.g. concurrent updates to different array 

elements

• ... or use multiple locks
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Synchronisation
• Every time we synchronise threads, there is some overhead, 

even if the threads are never idle.
• threads must communicate somehow.....

• Many OpenMP codes are full of (implicit) barriers
• end of parallel regions, parallel loops

• Barriers can be very expensive 
• depends on no. of threads, runtime, hardware, but typically 1000s to 

10000s of clock cycles.
• Criticals, atomics and locks are not free either.
• ...nor is creating or executing a task

9



Avoiding synchronisation overheads
• Parallelise at the outermost level possible. 

• Minimise the frequency of barriers
• May require reordering of loops and/or array indices.

• Careful use of NOWAIT clauses.
• easy to introduce race conditions by removing barriers that are 

required for correctness

• Atomics may have less overhead that critical or locks
• quality of implementation problem
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Scheduling
• If we create computational tasks, and rely on the runtime 

to assign these to threads, then we incur some overheads
• some of this is actually internal synchronisation in the runtime

• Examples: non-static loop schedules, task constructs

• Need to get granularity of tasks right
• too big may result in idle threads
• too small results in scheduling overheads
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#pragma omp parallel for schedule(dynamic,1) 
for (i=0;i<10000000;i++){
.......
} 



Communication
• On shared memory systems, communication is “disguised” as 

increased memory access costs - it takes longer to access 
data in main memory or another processors cache than it 
does from local cache. 

• Memory accesses are expensive! ( O(100) cycles for a main 
memory access compared to 1-3 cycles for a flop). 

• Communication between processors takes place via the 
cache coherency mechanism. 

• Unlike in message-passing, communication is fine –grained 
and spread throughout the program
• much harder to analyse or monitor. 
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Cache coherency in a nutshell
• If a thread writes a data item, it gets an exclusive copy of the 

data in it’s local cache

• Any copies of the data item in other caches get invalidated to 
avoid reading of out-of-date values.

• Subsequent accesses to the data item by other threads must 
get the data from the exclusive copy
• this takes time as it requires moving data from one cache to another 

(Caveat : this is a highly simplified description! )
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Data affinity
• Data will be cached on the processors which are accessing it, 

so we must reuse cached data as much as possible. 
• Need to write code with good data affinity - ensure that the 

same thread accesses the same subset of program data as 
much as possible. 

• Try to make these subsets large, contiguous chunks of data
• Also important to prevent threads migrating between cores 

while the code is running.
• use export OMP_PROC_BIND=true
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Data affinity example 1
#pragma omp parallel for schedule(static) 
for (i=0;i<n;i++){

for (j=0; j<n; j++){ 
a[j][i] = i+j;

}
}

#pragma omp parallel for schedule(static,16) 
for (i=0;i<n;i++){

for (j=0; j<i; j++){ 
b[j] += a[j][i];

}
}
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Different access patterns 
for a will result in extra 

communication

Balanced loop

Unbalanced loop



Data affinity example 2
#pragma omp parallel for
for (i=0;i<n;i++){

... = a[i];
}

for (i=0;i<n;i++){
a[i] = 23;

}

#pragma omp parallel for
for (i=0;i<n;i++){

... = a[i];
}
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a will be spread across 
multiple caches

Sequential code! 
a will be gathered into 

one cache

a will be spread across 
multiple caches again 



Data affinity (cont.) 

• Sequential code will take longer with multiple threads than it 
does on one thread, due to the cache invalidations

• Second parallel region will scale badly due to additional cache 
misses

• May need to parallelise code which does not appear to take 
much time in the sequential program!  
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Data affinity: NUMA effects
• Very evil! 
• On multi-socket systems, the location of data in main memory 

is important.
• Note: all current multi-socket x86 systems are NUMA!

• OpenMP has no support for controlling this. 
• Common default policy for the OS is to place data on the 

processor which first accesses it (first touch policy).
• For OpenMP programs this can be the worst possible option

• data is initialised in the master thread, so it is all allocated one node
• having all threads accessing data on the same node becomes a 

bottleneck
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Avoiding NUMA effects
• In some OSs, there are options to control data placement

• e.g. in Linux, can use numactl change policy to round-robin  

• First touch policy can be used to control data placement 
indirectly by parallelising data initialisation
• even though this may not seem worthwhile in view of the insignificant 

time it takes in the sequential code
• Don’t have to get the distribution exactly right

• some distribution is usually much better than none at all. 
• Remember that the allocation is done on an OS page basis 

• typically 4KB to 16KB
• beware of using large pages! 
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False sharing
• Very very evil! 

• The units of data on which the cache coherency 
operations are done (typically 64 or 128 bytes) are always 
bigger than a word (typically 4 or 8 bytes). 

• Different threads writing to neighbouring words in memory 
may cause cache invalidations! 
• still a problem if one thread is writing and others reading
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False sharing patterns
• Worst cases occur where different threads repeatedly write neighbouring 

array elements.

count[omp_get_thread_num()]++; 
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#pragma omp parallel for schedule(static,1) 
for (i=0;i<n;i++){

for (j=0; j<n; j++){ 
b[i] += a[j][i];

}
} 



Hardware resource contention
• The design of shared memory hardware is often a cost vs. 

performance trade-off.

• There are shared resources which, if all cores try to access at the 
same time, do not scale
• or, put another way, an application running on a single code can access 

more than its fair share of the resources
• In particular, cores (and hence OpenMP threads) can contend for:

• memory bandwidth 
• cache capacity 
• functional units (if using SMT)
• power and cooling
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Memory bandwidth
• Codes which are very bandwidth-hungry will not scale linearly 

on most shared-memory hardware.

• Try to reduce bandwidth demands by improving locality, and 
hence the re-use of data in caches
• will benefit the sequential performance as well. 
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Memory bandwidth example
• Intel Ivy Bridge processor

• 12 cores
• L1 and L2 caches per core
• 30 MB shared L3 cache
• Cray compiler

#pragma omp parallel for reduction(+:sum)
for (i=0;i<n;i++){

sum += a[i];
} 
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Death by synchronisation!

L3 cache BW contention

Memory BW contention



Cache space contention

• On systems where cores share some level of cache (e.g. L3), 
codes may not appear to scale well because a single core can 
access the whole of the shared cache.

• Beware of tuning block sizes for a single thread, and then 
running multithreaded code
• each thread will try to utilise the whole cache
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Hardware threads 
• When using hardware threads, OpenMP threads running on 

the same core contend for functional units as well as cache 
space and memory bandwidth. 

• Tends to benefit codes where threads are idle because they 
are waiting on memory references
• code with non-contiguous/random memory access patterns

• Codes which are bandwidth-hungry, or which saturate the 
floating point units (e.g. dense linear algebra) may not benefit 
from this
• may actually run slower
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Oversubscription
• Running more threads than hardware execution units 

(cores or hardware threads) is generally a bad idea.

• OS tries to give each thread a fair share of execution units

• Cost of stopping one thread and starting another is high 
(1000s of clock cycles)

• Ruins data locality! 
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Power and Cooling
• Some modern processors have dynamic CPU clocking 

features
• e.g. Intel’s TurboBoost

• If only a few cores are active, the clock frequency is 
dynamically increased to provide better performance
• Note: doesn’t help bandwidth-bound code! 

• With more cores active, this can’t be done because the 
power/cooling constraints would be exceeded. 

• Runs with small numbers of threads may go faster
• Results in less than ideal speedup
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Compiler (non-)optimisation
• Very rarely, the addition of OpenMP directives can inhibit the compiler 

from performing  sequential optimisations. 

• Symptoms: 1-thread parallel code has longer execution time than 
sequential code. 

• Can be hard to find a workaround

• Can sometimes be cured by making shared data private, or making  
local copies of variables. 
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Minimising overheads
My code is giving poor speedup. I don’t know why. 

What do I do now?
1.   

• Say “OpenMP is a heap of junk”. 
• Give up. 

2. 
• Try to classify and localise the sources of overhead. 
• What type of problem is it, and where in the code does it occur?  
• Use any available tools to help you (e.g. timers, hardware counters, 

profiling tools). 
• Fix problems which are responsible for large overheads first.
• Iterate.
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Profilers
• Standard profilers (gprof, IDE profilers) can be confusing 

• they typically accumulate the time spent in functions across all threads.
• You can get a lot out of using timers ( omp_get_wtime())
• Add  timers round every parallel region, and round the whole 

code.
• work out which parallel regions have the worst speedup
• don’t assume the time spent outside parallel regions is independent of 

the number of threads.



Performance tools
• Vampir

• timeline traces can be very useful for visualising load balance
• Intel Vtune
• Oracle Studio Performance Analyzer
• CrayPAT
• Scalasca

• breaks down overheads into different categories
• ParaTools Threadspotter

• very good for finding cache/memory problems, including false sharing. 



Exercise
• Profile and optimise a not-very-efficient version of the MD 

code.

• Separate source files: 

cp /home/z01/shared/tpo.tar . 
tar xvf tpo.tar
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