
Threaded
Programming

Other APIs

What’s wrong with OpenMP?

• OpenMP is designed for programs where you want a fixed
number of threads, and you always want the threads to be
consuming CPU cycles.
– cannot arbitrarily start/stop threads
– cannot put threads to sleep and wake them up later

• OpenMP is good for programs where each thread is doing
(more-or-less) the same thing.

• Although OpenMP supports C++, it’s not especially OO
friendly
– though it is gradually getting better.

• OpenMP doesn’t support other popular base languages
– e.g. Java, Python

What’s wrong with OpenMP? (cont.)

Can do this Can’t do thisCan do this

Threaded programming APIs

• Essential features
– a way to create threads
– a way to wait for a thread to finish its work
– a mechanism to support thread private data
– some basic synchronisation methods

– at least a mutex lock, or atomic operations

• Optional features
– support for tasks
– more synchronisation methods

– e.g. condition variables, barriers,...
– higher levels of abstraction

– e.g. parallel loops, reductions

What are the alternatives?

• POSIX threads

• C++ threads

• Intel TBB

• Cilk

• OpenCL

• Java

(not an exhaustive list!)

POSIX threads

• POSIX threads (or Pthreads) is a standard library for shared
memory programming without directives.
– Part of the ANSI/IEEE 1003.1 standard (1996)

• Interface is a C library
– no standard Fortran interface
– can be used with C++, but not OO friendly

• Widely available
– even for Windows
– typically installed as part of OS
– code is pretty portable

• Lots of low-level control over behaviour of threads
• Lacks a proper memory consistency model

Thread forking

#include <pthread.h>

int pthread_create(

pthread_t *thread,

const pthread_attr_t *attr,

void*(*start_routine, void*),

void *arg)

• Creates a new thread:
– first argument returns a pointer to a thread descriptor.
– can set attributes.
– new thread will execute start_routine(arg)
– return value is error code.

Thread joining

#include <pthread.h>

int pthread_join(

pthread_t thread,

void **value_ptr)

• Waits for the specified thread to finish.
– thread finishes when start_routine exits
– second argument holds return value from start_routine

Synchronisation

• Barriers
– need to specify how many threads will check in

• Mutex locks
– behaviour is essentially the same as the OpenMP lock routines.

• Condition variables
– allows a thread to put itself to sleep and be woken up by another

thread at some point in the future
– not especially useful in HPC applications
– c.f. wait/notify in Java

Hello World

#include <pthread.h>

#define NTHREADS 5

int i, threadnum[NTHREADS];

pthread_t tid[NTHREADS];

for (i=0; i<NTHREADS; i++) {

threadnum[i]=i;

pthread_create(&tid[i], NULL, hello, &threadnum[i]);

}

for (i=0; i<NTHREADS; i++)

pthread_join(tid[i], NULL);

Hello World (cont.)

void* hello (void *arg) {

int myid;

myid = *(int *)arg;

printf(“Hello world from thread %d\n”, myid);

return (0);

}

C++11 threads

• Library for multithreaded programming built in to C++11
standard

• Similar functionality to POSIX threads
– but with a proper OO interface
– based quite heavily on BOOST threads library

• Portable
– depends on C++11 support, OK in gcc, Intel, clang, MS

• Threads are C++ objects
– call a constructor to create a thread

• Synchronisation
– mutex locks
– condition variables
– C++11 atomics

Hello world

#include <thread>

#include <iostream>

#include <vector>

void hello(){

std::cout << "Hello from thread " << std::this_thread::get_id() <<
std::endl;

}

int main(){

std::vector<std::thread> threads;

for(int i = 0; i < 5; ++i){

threads.push_back(std::thread(hello));

}

for(auto& thread : threads){

thread.join();

}

}

Intel Thread Building Blocks (TBB)

• C++ library for multithreaded programming

• Offers somewhat higher level of abstraction that
POSIX/C++11 threads
– notion of tasks rather that explicit threads
– support for parallel loops and reductions
– mutexs and atomic operations, concurrency on containers

• Moderately portable
– support for Intel and gcc compilers on Linux and Mac OS X, Intel and

Visual C++ on Windows
– no build required to install

Hello World
#include <iostream>
#include <tbb/parallel_for.h>

using namespace tbb;

class Hello
{
public:
void operator()(int x) const {
std::cout << "Hello world\n";
}
};

int main()
{
// parallelizing:
// for(int i = 0; i < 2; ++i) { ... }
parallel_for(0, 2, 1, Hello());

return 0;
}

Cilk

• Very minimal API which supports spawning and joining of
tasks
– C/C++ with a few extra keywords

• Commercial implementation by Intel
– Intel Cilk Plus, built in to Intel C++ compiler
– not very portable

• Support for parallel loops and reductions
– No locks, but can use pthread or TBB mutexes.

• Still unclear whether it is really useful for real-world
applications!

Hello World

#include <stdio.h>

#include <cilk/cilk.h>

static void hello(){

printf("Hello ");

}

int main(){

cilk_spawn hello();

cilk_sync;

}

OpenCL

• API designed for programming heterogeneous systems
(GPUs, DSPs, etc).
– but can also execute on regular CPUs

• Open standard administered by Khronos Group

• Based on C99 with some extra keywords, large set of
runtime library routines

• CPU implementations from Intel, IBM

• Very low level (c.f. CUDA), lots of boiler-plate code required

• Performance (and performance portability) not convincingly
demonstrated....

OpenCL

• Quite a different model from other threaded APIs

• Execute host code on CPU which launches kernels to
execute on a device (typically GPU, but could be the CPU)

• Need to explicitly transfer data from host to device (and back
again)

• Kernel executes on multiple threads
– can get a thread identifier

• Limited ability to synchronise between threads
– barrier only inside a “workgroup”
– atomics

• Can specify orderings between kernels

Hello World

__kernel void hello(__global char* string)

{

string[0] = 'H';

string[1] = 'e';

string[2] = 'l';

string[3] = 'l';

string[4] = 'o';

string[5] = ',';

string[6] = ' ';

string[7] = 'W';

string[8] = 'o';

string[9] = 'r';

string[10] = 'l';

string[11] = 'd';

string[12] = '!';

string[13] = '\0';

}

#include <stdio.h>

#include <stdlib.h>

#include <CL/cl.h>

#define MEM_SIZE (128)

#define MAX_SOURCE_SIZE (0x100000)

int main()

{

cl_device_id device_id = NULL;

cl_context context = NULL;

cl_command_queue command_queue = NULL;

cl_mem memobj = NULL;

cl_program program = NULL;

cl_kernel kernel = NULL;

cl_platform_id platform_id = NULL;

cl_uint ret_num_devices;

cl_uint ret_num_platforms;

cl_int ret;

char string[MEM_SIZE];

FILE *fp;

char fileName[] = "./hello.cl";

char *source_str;

size_t source_size;

/* Load the source code containing

the kernel*/

fp = fopen(fileName, "r");

if (!fp) {

fprintf(stderr, "Failed to load

kernel.\n");

exit(1);

}

source_str =

(char*)malloc(MAX_SOURCE_SIZE);

source_size = fread(source_str, 1,

MAX_SOURCE_SIZE, fp);

fclose(fp);

/* Get Platform and Device Info */

ret = clGetPlatformIDs(1,

&platform_id, &ret_num_platforms);

ret = clGetDeviceIDs(platform_id,

CL_DEVICE_TYPE_DEFAULT, 1, &device_id,

&ret_num_devices);

/* Create OpenCL context */

context = clCreateContext(NULL, 1,

&device_id, NULL, NULL, &ret);

/* Create Command Queue */

command_queue =

clCreateCommandQueue(context,

device_id, 0, &ret);

/* Create Memory Buffer */

memobj = clCreateBuffer(context,

CL_MEM_READ_WRITE,MEM_SIZE *

sizeof(char), NULL, &ret);

/* Create Kernel Program from the

source */

program =

clCreateProgramWithSource(context, 1,

(const char **)&source_str,

(const size_t *)&source_size, &ret);

/* Build Kernel Program */

ret = clBuildProgram(program, 1,

&device_id, NULL, NULL, NULL);

/* Create OpenCL Kernel */

kernel = clCreateKernel(program,

"hello", &ret);

/* Set OpenCL Kernel Parameters */

ret = clSetKernelArg(kernel, 0,

sizeof(cl_mem), (void *)&memobj);

/* Execute OpenCL Kernel */

ret = clEnqueueTask(command_queue,

kernel, 0, NULL,NULL);

/* Copy results from the memory buffer

*/

ret =

clEnqueueReadBuffer(command_queue,

memobj, CL_TRUE, 0,

MEM_SIZE * sizeof(char),string, 0,

NULL, NULL);

/* Display Result */

puts(string);

/* Finalization */

ret = clFlush(command_queue);

ret = clFinish(command_queue);

ret = clReleaseKernel(kernel);

ret = clReleaseProgram(program);

ret = clReleaseMemObject(memobj);

ret =

clReleaseCommandQueue(command_queue);

ret = clReleaseContext(context);

free(source_str);

return 0;

}

Java threads

• Built in to the Java language specification
– highly portable

• Threads are Java objects
– created by calling a constructor

• Synchronisation
– synchronised blocks and methods

– act as a critical region
– specify an object to synchronise on
– every object has an associated lock

– also explicit locks, atomic classes, barriers, semaphores, wait/notify

25

Hello World

class Example {

public static void main(String args[]){

Thread thread_object [] = new Thread[nthread];

for(int i=0; i<nthread; i++){

thread_object[i] = new Thread(new MyClass(i));

thread_object[i].start();

}

for(int i=0; i<nthread; i++){

try{

thread_object[i].join();

}catch (InterruptedException x){}

}

}

}

26

Hello World (cont.)

class MyClass implements Runnable {

int id;

public MyClass(int id) {

this.id = id;

}

public void run() {

System.out.println("Hello World from Thread” + id);

}

}

Java Tasks

• Create an Executor Service with a pool of threads
ExecutorService ex = Executors.newFixedThreadPool(nthreads);

• Submitting tasks
– Submit method submits a task for execution and returns a Future

representing that task

Future ft = ex.submit(new Myclass(i));

– Future
– Represents the status and result of an asynchronous computation
– Provides methods to check if computation is complete, to wait for

completion and, if appropriate, retrieve the result of the computation

