
Advanced OpenMP
Exercise Notes

Getting started

Logging on to ARCHER
You should have been given a guest account ID – referred to generically here as
guestXX and password.
These credentials can be used to access ARCHER using

ssh -X guestXX@login.archer.ac.uk

or with the SSH client of your choice (-X ensures that graphics are routed back to
your desktop). Once you have successfully logged in you will be presented with an
interactive command prompt.
For more detailed instructions on connecting to ARCHER, or on how to run commands,
please see the Appendix.

Download and extract the exercise files
Firstly, change directory to make sure you are on the /work filesystem on ARCHER.

guestXX@archer:˜> cd /work/y14/y14/guestXX/

/work is a high performance parallel file system that can be accessed by both the
frontend and compute nodes. All jobs on ARCHER should be run from the /work
filesystem. ARCHER compute nodes cannot access the /home filesystem at all: any
jobs attempting to use /home will fail with an error.
Copy the tar file and unpack it with the command

tar xvf advomp.tar

Exercise 1: Mandelbrot with and without worksharing
First, remind yourself how to write some OpenMP by parallelising the code in
Advanced/*/Mandelbrot, where * is either C or Fortran90, using parallel and

1

loop constructs. Run the code using the script supplied to measure the performance on
1, 2, 4, 8, 12 and 24 threads.
Now try writing a version which does not use worksharing loop constructs or reduction
variables.

Exercise 2: Mandelbrot with nesting, collapse and tasks
Go back to the worksharing loop version of the Mandelbrot example. Try exploiting the
parallelism in both outer loops using first nested parallel regions, and then the collapse
clause.
Now rewrite this example using OpenMP tasks. To begin with, make the computation
of each point a task, and use one thread only to generate the tasks. Once this is working,
measure the performance. Now modify your code so that it treats each row of points
as a task. Modify your code again, so that all threads generate tasks. Which version
performs best? Is the performance better or worse that using a loop directive? Note that
reduction variables cannot be accessed in tasks, so you will need to find an alternative
solution.

Exercise 3: Cache Coherency
The code for this exercise is in Advanced/*/Coherency/ where * is either C or
Fortran90.
First of all, take a look at the code coherency.[f90|c] and work out what it is do-
ing. Use the Makefile to compile the code. Execute it using two threads by submitting
the supplied batch script with the command qsub -q <resnum> coherency.pbs
where resnum is the reservation code for the session. Try to explain the observed re-
sults, and use them to compute the cost of a coherency miss.

Extra exercise
Try changing the -cc argument to aprun in the script so that the code runs on differ-
ent pairs of cores.

Exercise 4: NUMA effects
The example code can be found in Advanced/*/NUMA/. This is the well-known
STREAMS benchmark for measuring memory bandwidth. Use the Makefile to com-
pile the code, and run it using different numbers of threads using the supplied batch
script.
Does the bandwidth scale linearly with processors? Now try removing the OpenMP
loop directive from the initialisation of the arrays. How does the performance change?
You can also try using the ”wrong” schedule for the loop, or selecting different sets of
cores to run on.

2

Extra exercise
Try reducing the array size N by a factor of 100 or 1000 (and increase the repetition
count NTIMES by the same amount).

Exercise 5: OpenMP + MPI
In this exercise, we will use a 1-D cellular automaton example which models the flow
of cars on a road in a very simple way, and implement a mixed OpenMP/MPI version.
A working MPI implementation can be found in Advanced/*/Traffic.
Add parallel loop directives to the two loops inside the main iteration loop: the one
which applies the cellular automaton rule, and the one which copies the new state of
the road to the old one.
Use the script provides to run different combinations of threads/processes on the same
number of processors (e.g. 48 processes and 1 threads, 24 processes and 2 threads,
etc.). Which combination gives the best performance? How does this compare to the
MPI only version?

Extra exercise
Try implementing the code in different hybrid styles (Funneled, Serialized and Multi-
ple)

Exercise 6: Molecular Dynamics performance
The Advanced/*/MolDyn/ directory contains a parallel version of a simple molec-
ular dynamics code. Run the code using the script supplied with the script supplied to
measure the performance on 1, 2, 4, 8, 12 and 24 threads. Now modify the code so that
it uses atomic update instead of CRITICAL — does the performance improve?
Next modify the code so that it uses an array of locks instead. Write your code so that
you can associate more than one particle with a lock.

Extra exercise (Fortran only)
Use a reduction clause for f instead. Compare the performance with the other versions.

Appendix

Detailed Login Instructions
Procedure for Mac and Linux users

Open a command line Terminal and enter the following command:

3

local$ ssh -X guestXX@login.archer.ac.uk
Password:

you should be prompted to enter your password.

Procedure for Windows users

Windows does not generally have SSH installed by default so some extra work is re-
quired. You need to download and install a SSH client application - PuTTY is a good
choice:

• http://www.chiark.greenend.org.uk/˜sgtatham/putty/

When you start PuTTY you should be able to enter the ARCHER login address (lo-
gin.archer.ac.uk). When you connect you will be prompted for your user ID and pass-
word.

Running commands
You can list the directories and files available by using the ls (LiSt) command:

guestXX@archer:˜> ls
bin work

You can modify the behaviour of commands by adding options. Options are usually
letters or words preceded by ‘-’ or ‘–’. For example, to see more details of the files and
directories available you can add the ‘-l’ (l for long) option to ls:

guestXX@archer:˜> ls -l
total 8
drwxr-sr-x 2 user z01 4096 Nov 13 14:47 bin
drwxr-sr-x 2 user z01 4096 Nov 13 14:47 work

If you want a description of a particular command and the options available you can ac-
cess this using the man (MANual) command. For example, to show more information
on ls:

guestXX@archer:˜> man ls
Man: find all matching manual pages

* ls (1)
ls (1p)

Man: What manual page do you want?
Man:

In the manual, use the spacebar to move down a page, ‘u’ to move up, and ‘q’ to quit
and exit back to the command line.

4

Using the Emacs text editor
As you do not have access to a windowing environment when using ARCHER, Emacs
will be used in in-terminal mode. In this mode you can edit the file as usual but you
must use keyboard shortcuts to run operations such as “save file” (remember, there are
no menus that can be accessed using a mouse).
Start Emacs with the emacs command and the name of the file you wish to create. For
example:

guestXX@archer:˜> emacs sharpen_batch.pbs

The terminal will change to show that you are now inside the Emacs text editor.
Typing will insert text as you would expect and backspace will delete text. You use
special key sequences (involving the Ctrl and Alt buttons) to save files, exit Emacs and
so on.
Files can be saved using the sequence “Ctrl-x Ctrl-s” (usually abbreviated in Emacs
documentation to “C-x C-s”). You should see the following briefly appear in the line
at the bottom of the window (the minibuffer in Emacs-speak):

Wrote ./sharpen_batch.pbs

To exit Emacs and return to the command line use the sequence “C-x C-c”. If you
have changes in the file that have not yet been saved Emacs will prompt you (in the
minibuffer) to ask if you want to save the changes or not.
Although you could edit files on your local machine using whichever windowed text
editor you prefer it is useful to know enough to use an in-terminal editor as there will
be times where you want to perform a quick edit that does not justify the hassle of
editing and re-uploading.

Useful commands for examining files
There are a couple of commands that are useful for displaying the contents of plain text
files on the command line that you can use to examine the contents of a file without
having to open in in Emacs (if you want to edit a file then you will need to use Emacs).
The commands are cat and less. cat simply prints the contents of the file to the terminal
window and returns to the command line. For example:

guestXX@archer:˜> cat sharpen_batch.pbs
aprun -n 4 ./sharpen

This is fine for small files where the text fits in a single terminal window. For longer
files you can use the less command. less gives you the ability to scroll up and down in
the specified file. For example:

guestXX@archer:˜> less sharpen.c

Once in less you can use the spacebar to scroll down and ‘u’ to scroll up. When you
have finished examining the file you can use ‘q’ to exit less and return to the command
line.

5

Hardware
Each node of ARCHER consist of two sockets, each containing a 12-core Intel Ivy
Bridge processor.

Compiling using OpenMP
The OpenMP compilers we use are the Cray compilers for Fortran 90 and C. To compile
an OpenMP code, simply compile with either ftn (for Fortran) or cc (for C): OpenMP
is enabled by default: to disable it add the flag -h noomp.

Job Submission
You can run OpenMP codes on the login nodes in the usual way (set OMP NUM THREADS
and execute).
For accurate timings, you should submit a batch job as follows:

qsub -q <resnum> scriptfile.pbs

where resnum is the reservation number for the session.
Alternatively, you can reserve an interactive session with

qsub -q <resnum> -IVl select=1,walltime=1:0:0 -A y14

which reserves one node for 1 hour. Note that the third character in the -IVl argument
is the letter “l” and not the number “1”.
When the node is allocated, you are effectively logged into it and you will get back a
command prompt like this:

guestXX@mom1:˜>

Note that you will now be back in your home directory so you will need to change
to the work filesystem: cd /work/y14/y14/guestXX/.
You can now run parallel jobs directly from the command line as you have interactive
access to one of the compute nodes. For example, to run on 4 threads:

export OMP_NUM_THREADS=4
aprun -n 1 -d $OMP_NUM_THREADS ./hello

Do not log out from this session! You should leave this interactive window open all
the time so you can run jobs whenever you want. You cannot compile in this window,
though: you will need to open another window on ARCHER to compile your code.
You can monitor your jobs status with the qstat command, and jobs can be deleted
with qdel .

6

