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Outline 
• Computer layout 

• CPU and Memory 

• What does performance depend on? 

• Limits to performance 

 

• Silicon-level parallelism 

• Single Instruction Multiple Data (SIMD/Vector) 

• Multicore 

• Symmetric Multi-threading (SMT) 

 

• Accelerators (GPGPU and Xeon Phi) 

• What are they good for? 



Computer Layout 

How do all the bits interact and which ones matter? 





 



Anatomy of a computer 



Data Access 
• Disk access is slow 

• a few hundreds of Megabytes/second 

 

• Large memory sizes allow us to 
keep data in memory 

• but memory access is slow 

• a few tens of Gigabytes/second 

 

• Store data in fast cache memory 

• cache access much faster: hundreds 
of Gigabytes per second 

• limited size: a few Megabytes at most 

 



Performance 

• The performance (time to solution) on a single computer 

can depend on: 

• Clock speed – how fast the processor is 

• Floating point unit – how many operands can be operated on and 

what operations can be performed? 

• Memory latency – what is the delay in accessing the data? 

• Memory bandwidth – how fast can we stream data from memory? 

• Input/Output (IO) to storage – how quickly can we access 

persistent data (files)? 



Performance (cont.) 

• Application performance often described as: 

• Compute bound 

• Memory bound 

• IO bound 

• (Communication bound – more on this later…) 

 

• For computational science 

• most calculations are limited by memory bandwidth 

• processor can calculate much faster than it can access data 

 



Silicon-level parallelism 

What does Moore’s Law mean anyway? 



Moore’s Law 

• Number of 
transistors 
doubles every 
18-24 months 
• enabled by 

advances in 
semiconductor 
technology and 
manufacturing 
processes 

 



What to do with all those transistors? 

• For over 3 decades until early 2000’s 

• more complicated processors 

• bigger caches 

• faster clock speeds 

 

• Clock rate increases as inter-transistor distances decrease 

• so performance doubled every 18-24 months 

 

• Came to a grinding halt about a decade ago 

• reached power and heat limitations 

• who wants a laptop that runs for an hour and scorches your trousers! 



Alternative approaches 

• Introduce parallelism into the processor itself 

 

• vector instructions 

• simultaneous multi-threading 

• multicore 

 

 



Single Instruction Multiple Data (SIMD) 

• For example, vector addition: 

• single instruction adds 4 numbers 

• potential for 4 times the performance 



Symmetric Multi-threading (SMT) 

• Some hardware supports running multiple instruction 
streams simultaneously on the same processor, e.g. 
• stream 1: loading data from memory 

• stream 2: multiplying two floating-point numbers together 

• Known as Symmetric Multi-threading (SMT) or 
hyperthreading (Intel) 

• Threading in this case can be a misnomer as it can refer 
to processes as well as threads 

• These are hardware threads, not software threads. 

• Intel Xeon supports 2-way SMT 

• IBM BlueGene/Q 4-way SMT 



Multicore 

• Twice the number of transistors gives 2 choices 
 

• a new more complicated processor with twice the clock speed 

• two versions of the old processor with the same clock speed 

 

• The second option is more power efficient 

• and now the only option as we have reached heat/power limits 

 

• Effectively two independent processors 

• … except they can share cache 

• commonly called “cores” 



Multicore 

• Cores share path to memory 

• SIMD instructions + multicore make 

this an increasing bottleneck! 

 



Intel Xeon E5-2600 – 8 cores HT 



What is a processor? 

• To a programmer 

• the thing that runs my program 

• i.e. a single core of a multicore processor 

 

• To a hardware person 

• the thing you plug in to a socket on the motherboard 

• i.e. an entire multicore processor 
 

• Some ambiguity 

• in this course we will talk about cores and sockets 

• try and avoid using “processor” 



Chip types and manufacturers 

• x86 – Intel and AMD 
• “PC” commodity processors, SIMD (SSE, AVX) FPU, multicore, 

SMT (Intel); Intel currently dominates the HPC space.  

• Power – IBM 
• Used in high-end HPC, high clock speed (direct water cooled), 

SIMD FPU, multicore, SMT; not widespread anymore. 

• PowerPC – IBM BlueGene 
• Low clock speed, SIMD FPU, multicore, high level of SMT. 

• SPARC – Fujitsu 

• ARM – Lots of manufacturers 
• Not yet relevant to HPC (weak FP Unit) 



Accelerators 

Go-faster stripes 



Anatomy 

• An Accelerator is a additional resource that can be used 

to off-load heavy floating-point calculation 

• additional processing engine attached to the standard processor 

• has its own floating point units and memory 



AMD 12-core CPU 
• Not much space on CPU is dedicated to computation 

= compute unit 
(= core) 



NVIDIA Fermi GPU 

• GPU dedicates much 

more space to 

computation 

• At expense of caches, 

controllers, sophistication etc  

= compute unit 
(= SM  
 = 32 CUDA cores) 



Intel Xeon Phi – KNC (Knights Corner) 
• As does Xeon Phi 

= compute  
unit 
(= core) 



Intel Xeon Phi – KNL (Knights Landing) 



Memory 

• For most HPC applications, performance is very sensitive to memory 

bandwidth 

• GPUs and Intel Phi both use Graphics memory: much higher 

bandwidth than standard CPU memory 

• KNL has high bandwidth on-board memory 

CPUs use DRAM GPUs and Xeon Phi use Graphics 
DRAM 



Summary 



Summary - What is automatic? 

• Which features are managed by hardware/software and 

which does the user/programmer control? 

• Cache and memory – automatically managed 

• SIMD/Vector parallelism – automatically produced by compiler 

• SMT – automatically managed by operating system 

• Multicore parallelism – manually specified by the user 

• Use of accelerators – manually specified by the user 


