
Building Blocks 
CPUs, Memory and Accelerators 



Reusing this material 

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License. 

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US 

 
This means you are free to copy and redistribute the material and adapt and build on the 

material under the following terms: You must give appropriate credit, provide a link to the 

license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original. 

 

Note that this presentation contains images owned by others. Please seek their permission 

before reusing these images. 

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US


Outline 
• Computer layout 

• CPU and Memory 

• What does performance depend on? 

• Limits to performance 

 

• Silicon-level parallelism 

• Single Instruction Multiple Data (SIMD/Vector) 

• Multicore 

• Symmetric Multi-threading (SMT) 

 

• Accelerators (GPGPU and Xeon Phi) 

• What are they good for? 



Computer Layout 

How do all the bits interact and which ones matter? 





 



Anatomy of a computer 



Data Access 
• Disk access is slow 

• a few hundreds of Megabytes/second 

 

• Large memory sizes allow us to 
keep data in memory 

• but memory access is slow 

• a few tens of Gigabytes/second 

 

• Store data in fast cache memory 

• cache access much faster: hundreds 
of Gigabytes per second 

• limited size: a few Megabytes at most 

 



Performance 

• The performance (time to solution) on a single computer 

can depend on: 

• Clock speed – how fast the processor is 

• Floating point unit – how many operands can be operated on and 

what operations can be performed? 

• Memory latency – what is the delay in accessing the data? 

• Memory bandwidth – how fast can we stream data from memory? 

• Input/Output (IO) to storage – how quickly can we access 

persistent data (files)? 



Performance (cont.) 

• Application performance often described as: 

• Compute bound 

• Memory bound 

• IO bound 

• (Communication bound – more on this later…) 

 

• For computational science 

• most calculations are limited by memory bandwidth 

• processor can calculate much faster than it can access data 

 



Silicon-level parallelism 

What does Moore’s Law mean anyway? 



Moore’s Law 

• Number of 
transistors 
doubles every 
18-24 months 
• enabled by 

advances in 
semiconductor 
technology and 
manufacturing 
processes 

 



What to do with all those transistors? 

• For over 3 decades until early 2000’s 

• more complicated processors 

• bigger caches 

• faster clock speeds 

 

• Clock rate increases as inter-transistor distances decrease 

• so performance doubled every 18-24 months 

 

• Came to a grinding halt about a decade ago 

• reached power and heat limitations 

• who wants a laptop that runs for an hour and scorches your trousers! 



Alternative approaches 

• Introduce parallelism into the processor itself 

 

• vector instructions 

• simultaneous multi-threading 

• multicore 

 

 



Single Instruction Multiple Data (SIMD) 

• For example, vector addition: 

• single instruction adds 4 numbers 

• potential for 4 times the performance 



Symmetric Multi-threading (SMT) 

• Some hardware supports running multiple instruction 
streams simultaneously on the same processor, e.g. 
• stream 1: loading data from memory 

• stream 2: multiplying two floating-point numbers together 

• Known as Symmetric Multi-threading (SMT) or 
hyperthreading (Intel) 

• Threading in this case can be a misnomer as it can refer 
to processes as well as threads 

• These are hardware threads, not software threads. 

• Intel Xeon supports 2-way SMT 

• IBM BlueGene/Q 4-way SMT 



Multicore 

• Twice the number of transistors gives 2 choices 
 

• a new more complicated processor with twice the clock speed 

• two versions of the old processor with the same clock speed 

 

• The second option is more power efficient 

• and now the only option as we have reached heat/power limits 

 

• Effectively two independent processors 

• … except they can share cache 

• commonly called “cores” 



Multicore 

• Cores share path to memory 

• SIMD instructions + multicore make 

this an increasing bottleneck! 

 



Intel Xeon E5-2600 – 8 cores HT 



What is a processor? 

• To a programmer 

• the thing that runs my program 

• i.e. a single core of a multicore processor 

 

• To a hardware person 

• the thing you plug in to a socket on the motherboard 

• i.e. an entire multicore processor 
 

• Some ambiguity 

• in this course we will talk about cores and sockets 

• try and avoid using “processor” 



Chip types and manufacturers 

• x86 – Intel and AMD 
• “PC” commodity processors, SIMD (SSE, AVX) FPU, multicore, 

SMT (Intel); Intel currently dominates the HPC space.  

• Power – IBM 
• Used in high-end HPC, high clock speed (direct water cooled), 

SIMD FPU, multicore, SMT; not widespread anymore. 

• PowerPC – IBM BlueGene 
• Low clock speed, SIMD FPU, multicore, high level of SMT. 

• SPARC – Fujitsu 

• ARM – Lots of manufacturers 
• Not yet relevant to HPC (weak FP Unit) 



Accelerators 

Go-faster stripes 



Anatomy 

• An Accelerator is a additional resource that can be used 

to off-load heavy floating-point calculation 

• additional processing engine attached to the standard processor 

• has its own floating point units and memory 



AMD 12-core CPU 
• Not much space on CPU is dedicated to computation 

= compute unit 
(= core) 



NVIDIA Fermi GPU 

• GPU dedicates much 

more space to 

computation 

• At expense of caches, 

controllers, sophistication etc  

= compute unit 
(= SM  
 = 32 CUDA cores) 



Intel Xeon Phi – KNC (Knights Corner) 
• As does Xeon Phi 

= compute  
unit 
(= core) 



Intel Xeon Phi – KNL (Knights Landing) 



Memory 

• For most HPC applications, performance is very sensitive to memory 

bandwidth 

• GPUs and Intel Phi both use Graphics memory: much higher 

bandwidth than standard CPU memory 

• KNL has high bandwidth on-board memory 

CPUs use DRAM GPUs and Xeon Phi use Graphics 
DRAM 



Summary 



Summary - What is automatic? 

• Which features are managed by hardware/software and 

which does the user/programmer control? 

• Cache and memory – automatically managed 

• SIMD/Vector parallelism – automatically produced by compiler 

• SMT – automatically managed by operating system 

• Multicore parallelism – manually specified by the user 

• Use of accelerators – manually specified by the user 


