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Outline 

• What does an Operating System (OS) do? 

• OS types in HPC 

• The Command Line 

• Processes 

• Threads 

• Threads on accelerators 

• OS performance optimisation 

• Why is the OS bad for performance? 

• Approaches to improving OS performance 



Operating Systems 

What do they do? Which ones are used for HPC? 



Operating System (OS) 

• The OS is responsible for orchestrating access to the 

hardware by applications. 

• Which applications are running at any one time? 

• How is the memory allocated and de-allocated? 

• How is the file-system accessed? 

• Who has authority to access which resources? 

• Running applications are controlled through                     

the concepts of processes and threads. 

• an applications / program is a single process… 

• …which may have multiple threads 



OS’s for HPC 

• HPC systems have always used Unix 
• vendors (DEC, SUN, Cray, IBM, SGI, …) all wrote their own version 

• Now dominated by Linux (of various flavours) 
• Most HPC vendors modify a commercial Linux distro (RedHat or 

SUSe) and tailor to their own system. 

• Many commodity clusters run a free Linux distro (CentOS is 
particularly popular). 

• Only IBM Power systems still use vendor Unix (AIX) 
• 3 HPC systems in the June 2016 Top500 do not use Linux 

• Windows really not used for HPC 
• No systems in the June 2016 Top500 list use Windows 



The Command Line 

• HPC sector is dominated by Linux 

• Interaction almost always through Linux command line. 
• e.g. which two files or folders are taking up the most space? 

   user@hpcsystem> du –sm * | sort –n | tail -2 

• often a reasonably large barrier to new people adopting HPC. 

• For any serious use of HPC you will have to learn to use 
the command line. 
• often also useful for using command line on your own laptop/PC 

• Should also learn basic operation of in-terminal text editor 

•  vi/vim is generally available 

•  emacs is another popular choice 



Processes 



Processes 

• Each application is a separate process in the OS 

• a process has its own memory space which is not accessible by other 
running process. 

• processes are ring-fenced from each other: if web browser crashes, it 
can’t scribble over document stored in the memory your word processor 

• Each process is scheduled to run by the OS 



OS and multicore 

• “Multicore parallelism – manually specified by the user” 
• what’s the use of a multicore laptop if I run non-parallel code? 

 

• OS’s have always scheduled multiple processes 
• regularly check which process is running 

• give another process a chance to run for a while  

• rapid process switching gives illusion applications run concurrently 
even on a single core 

 

• With a multicore processor  
• multiple processes can really run at the same time 



Process Scheduling 

• The OS has responsibility for interrupting a process and granting 

the core to another process 

• Which process is selected is determined by the scheduling policy 

• Interrupt happens at regular intervals (every 0.01 seconds is typical) 

• Process selected should have processing work to do 

• On a quad core processor, OS schedules 4 processes at once 

• Some hardware supports multiple processes per core 

• Known as Symmetric Multi-threading (SMT) 

• Usually appears to the OS as an additional core to use for scheduling 

• Process scheduling can be a hindrance to performance 

• in HPC, typically want a single user process per core 



Threads 

Sharing memory 



Threads 

• For many applications each process has a single thread… 

• … but a single process can contain multiple threads 

• each thread is like a child process contained within parent process  



Threads (cont.) 

• All threads in a process have access to the same memory 

• the memory of the parent process 

• Threads are a useful programming model pre-dating multicore 

• e.g. a computer game (a process) creates asynchronous threads 

• one thread controls the spaceship 

• another controls the missile 

• another deals with keyboard input 

• … 

• but all threads update the same game memory, e.g. the screen 

 

• OS scheduling policy is aware of threads 

• ensures all of the game operations progress 

• switching between threads usually quicker than between processes 

 

 



Threads and multicore 

• With multiple cores 

• multiple threads can operate at the same time on the same data to 

speed up applications 

 

• Cannot scale beyond the number of cores managed by the 

operating system 

• to share memory, threads must belong to the same parent process 

 

• In HPC terms cannot scale beyond a single node 

• using multiple nodes requires multiple processes 

• this requires inter-process communication – see later 



Shared-memory concepts 

• Process has an array of size eight 

• each thread operates on half the data; potential for 2x speedup 



Threads and Accelerators 

• The Accelerator programming model generally requires a 

huge number of threads to provide efficient usage 

• Oversubscription of the accelerator by threads is encouraged 

• Hardware supports fast switching of execution of threads 

• switch off a thread when it is waiting for data from memory 

• switch on a thread that is ready to do computation 

• try and hide memory latency 

• As GPGPUs can have 1000’s of computing elements, 

oversubscription can be difficult! 

• Threading is becoming more and more important on 

modern HPC machines 



OS Optimisation 

How do vendors get performance? 



Different Compute node OS 

• Interactive (front-end) nodes usually run a full OS 

• You interact with these directly and-so the OS provides a full suite 

of tools and functionality that you would expect 

 

• Compute nodes often run an optimised OS to improve 

performance 

• A greatly stripped down system with the bare minimum functionality 

required to run codes 

• As you don’t interact directly with the compute nodes then they just 

need to support the execution of codes 

• Example is Cray’s Compute Node Linux which is based on SUSE 

Linux (Enterprise) 

 

 



OS Optimisations 
• Remove features that are not needed (e.g. USB support) 

• The best optimization is not to have it in the first place! 

 

• Restrict scheduling flexibility and increase interrupt period 

• To avoid interrupting user programs 

 

• Bind processes and threads to specific cores 

 

• Remove support for virtual memory (paging) 

• Which provides the illusion of more RAM than is physically 

available by writing out to disk. However this is very slow and 

hence avoided with HPC. 

• Therefore the amount of RAM present is a                                           

strict memory limit that you can’t go beyond 

 



Summary 



Summary 

• OS orchestrates access to hardware resources by software 

• HPC sector dominated by Linux 

• Access via command line rather than GUI 

• Each running application is a separate process 

• Has its own memory space and can be scheduled by OS 

• Usually placed on a particular core and not moved 

• Running applications can have one or more threads 

• Threads share memory and OS switching is faster than for processes 

• OS Optimisation 

• Remove unnecessary features 

• Increase user-level control of placement 


