
OO Fortran Exercises

Adrian Jackson

February 27, 2018

Contents

1 Introduction 1

2 Getting going on ARCHER 2
2.1 Log into ARCHER frontend nodes and run commands 2

3 Introduction to Fortran 2

4 Modules 3

5 Derived Types 3

6 Classes 4

7 Inheritance and Overloading 4

8 Appendix 6
8.1 Detailed Login Instructions . 6

8.1.1 Procedure for Mac and Linux users 6
8.1.2 Procedure for Windows users . 6

8.2 Running commands . 6
8.3 Using the Emacs text editor . 7
8.4 Useful commands for examining files . 8

1 Introduction

The exercises in this sheet are designed to help with your understanding of the Fortran object-
oriented, or object-oriented like, features that we are discussing in this course. The exercises on
this sheet are small, self contained, practicals, and go hand in hand with the percolate practical
we are also undertaking on the course.

The first practical is simply to familiarise you with getting access to, and writing programs, on
ARCHER. After this the practicals aim to highlight the main features discussed in the associated

1

lectures.

2 Getting going on ARCHER

The aim of this exercise is to get you used to logging into the ARCHER resource, using the
command line and an editor to manipulate files. ARCHER is a large scale parallel resource,
so jobs would generally be submitted through a batch system. However, as we are not creating
parallel programs in this course we can do all our development and execution of programs on
the ARCHER login nodes.

You can find more details on ARCHER and how to use it in the User Guide at:

• http://www.archer.ac.uk/documentation/user-guide/

ARCHER has three compiler suites available for uses:

• Cray

• Intel

• GNU

For these exercise we will be using the Cray compilers, these are loaded by default when you
log on the system.

2.1 Log into ARCHER frontend nodes and run commands

You should have been given a guest account ID – referred to generically here as guestXX and
password. (If you have not, please contact a demonstrator.)

These credentials can be used to access ARCHER by connecting to

ssh -X guestXX@login.archer.ac.uk

with the SSH client of your choice (-X ensures that graphics are routed back to your desk-
top). Once you have successfully logged in you will be presented with an interactive command
prompt.

For more detailed instructions on connecting to ARCHER, or on how to run commands, please
see the Appendix.

3 Introduction to Fortran

1. CFD calculation: Compile and run the CFD practical. You do not need to alter anything
in the code at this point.

2. Hello World: Write a Fortran 95 program to write out Hello World on the screen. Com-
pile and run the program.

2

http://www.archer.ac.uk/documentation/user-guide/

3. Area calculation: Write a program to read in a radius and calculate the area of the cor-
responding circle and volume of the corresponding sphere. Try out the program with
different inputs.

Area of a circle: area = πr2

Volume of a sphere: volume = 4πr3

3

Use the value 3.14159 for π

You can use the following code as the template for the program:

PROGRAM Area_and_Vol
!...Add specification part

WRITE(*,”(A)”) "Type in the radius: "
READ*, radius
!...Add code to calculate area and volume
WRITE(*,”(A26,F5.1,A4,F6.1)”) &

"Area of circle with radius ",&
radius, " is ", area

WRITE(*,”(A28,F5.1,A4,F6.1)”) &
"Volume of sphere with radius ",&
radius, " is ", volume
END PROGRAM Area_and_Vol

4 Modules

1. Triangles: Write a module that contains functions that will calculate the area and angles
in a right angled triangle if passed the integer lengths of the three sides of the triangle as
arguments, and will calculate the length of the hypotenuse if passed the integer lengths of
the other two sides as arguments. Import that module into a program and test it.

2. Polymorphism: Extend your shapes module so that it can also calculate the same quan-
tities if passed real numbers rather than integers. You should use interfaces for the proce-
dures so you can call them by the same name regardless of the type of number passed in
the main program.

3. More shapes: Write a new module that contains functions that calculate the area of a
rectangle given the length of two sides. Use this in the program, along with the triangle
module to calculate the area of half the rectangle (hint: use the triangle functionality to
do this calculation).

5 Derived Types

1. Triangles again: Create a derived type that represents a right angled triangle using the
lengths of the three sides. Use this in your triangle module.

3

2. Vector: Create a derived type that represents a vector and also stores the length of the
vector. Write procedures that use that data type to calculate the sum and dot product
of two vectors. Time how long it takes to undertake these operations for, say, 10,000
elements (you may need to add a loop to repeat the calculations enough times to give a
sufficiently trustworthy timing).

3. Vector again: Create a derived type that represents a vector point, and use this to create
a further derived type that represents a vector. Compare its performance to the previous
type you created.

4. Fields: Create a derived type that represents a particle in a 2d field that has a position and
velocity. Create a derived type that represents a set of particles (i.e. field). Assuming that
the velocity stored in the particle type represents the distance a particle will move in one
timestep simulate the particles moving for a number of timesteps and time how long it
takes for the simulation to run.

5. Fields again: Now create a particle set derived type that stores the same information
without using the particle type (i.e. a set of arrays for the velocity and position of the
particles). Run the same simulation and see if there is a difference in performance from
the last exercise. Additional task: Consider how you split the particles into different
domains (i.e. if you wanted to use more than one process to run the simulation), and what
impact this could have on the implementation you would choose. Additional task: Extend
the particle datatype to 3d.

6. CFD: Complete the CFD practical.

6 Classes

1. Even more shapes: Implement type bound procedures for the shape classes that you
created in the derived type exercises. Try unlimited polymorphism functionality to have
single functions that will calculate the required values for integer or real versions of the
shapes. Uses these as before and measure the performance of this approach.

2. Even more vectors: Likewise convert the vector modules you had before, adding type
bound procedures and evaluate the performance.

3. Even more fields: Add the procedures used by the fields functionality to the fields type.
Extend the procedures for that they can take a 1d, 2d, and 3d particles, checking at run
time which class has been passed. Additional task: Add a constructor for the class to
initialise the particles when the class is created.

7 Inheritance and Overloading

1. People: Create set of classes that represent different levels of staff in an organisation.
Use an abstract class to define the required basic functionality and data. You can assume
that more senior staff have different functionality to junior staff. Test operations on your
different levels of staff.

4

2. Vector Operator: Overload the + and − operators to accept two vectors and produce a
single vector as a result.

3. Shapes: Define an abstract shape type with deferred procedures that triangle implements.
Extend triangle create a rectangle type that performs the same functionality you had be-
fore.

4. Field Hierarchy: Implement a class hierarchy for 1d, 2d, and 3d particles, and fields that
use them. Why super- and sub-classes will you need. How will the classes be constructed?
Does this new hierarchy still give the same performance as you had with the previous
implementations of fields.

5

8 Appendix

8.1 Detailed Login Instructions

8.1.1 Procedure for Mac and Linux users

Open a command line Terminal and enter the following command:

local$ ssh -X guestXX@login.archer.ac.uk
Password:

you should be prompted to enter your password.

8.1.2 Procedure for Windows users

Windows does not generally have SSH installed by default so some extra work is required. You
need to download and install a SSH client application - PuTTY is a good choice:

• http://www.chiark.greenend.org.uk/s̃gtatham/putty/

When you start PuTTY you should be able to enter the ARCHER login address (login.archer.ac.uk).
When you connect you will be prompted for your user ID and password.

8.2 Running commands

You can list the directories and files available by using the ls (LiSt) command:

guestXX@archer:~> ls
bin work

You can modify the behaviour of commands by adding options. Options are usually letters
or words preceded by ‘-’ or ‘–’. For example, to see more details of the files and directories
available you can add the ‘-l’ (l for long) option to ls:

guestXX@archer:~> ls -l
total 8
drwxr-sr-x 2 user z01 4096 Nov 13 14:47 bin
drwxr-sr-x 2 user z01 4096 Nov 13 14:47 work

If you want a description of a particular command and the options available you can access this
using the man (MANual) command. For example, to show more information on ls:

guestXX@archer:~> man ls
Man: find all matching manual pages

* ls (1)
ls (1p)

Man: What manual page do you want?
Man:

6

http://www.chiark.greenend.org.uk/~sgtatham/putty/

In the manual, use the spacebar to move down a page, ‘u’ to move up, and ‘q’ to quit and exit
back to the command line.

8.3 Using the Emacs text editor

As you do not have access to a windowing environment when using ARCHER, Emacs will
be used in in-terminal mode. In this mode you can edit the file as usual but you must use
keyboard shortcuts to run operations such as “save file” (remember, there are no menus that can
be accessed using a mouse).

Start Emacs with the emacs command and the name of the file you wish to create. For example:

guestXX@archer:~> emacs Makefile

The terminal will change to show that you are now inside the Emacs text editor:

Typing will insert text as you would expect and backspace will delete text. You use special key
sequences (involving the Ctrl and Alt buttons) to save files, exit Emacs and so on.

Files can be saved using the sequence “Ctrl-x Ctrl-s” (usually abbreviated in Emacs documen-
tation to “C-x C-s”). You should see the following briefly appear in the line at the bottom of the
window (the minibuffer in Emacs-speak):

Wrote ./Makefile

To exit Emacs and return to the command line use the sequence “C-x C-c”. If you have changes
in the file that have not yet been saved Emacs will prompt you (in the minibuffer) to ask if you
want to save the changes or not.

Although you could edit files on your local machine using whichever windowed text editor you
prefer it is useful to know enough to use an in-terminal editor as there will be times where you
want to perform a quick edit that does not justify the hassle of editing and re-uploading.

7

8.4 Useful commands for examining files

There are a couple of commands that are useful for displaying the contents of plain text files
on the command line that you can use to examine the contents of a file without having to open
in in Emacs (if you want to edit a file then you will need to use Emacs). The commands are
cat and less. cat simply prints the contents of the file to the terminal window and returns to the
command line. For example:

guestXX@archer:~> cat build
rm -f percolate percolate.o uni.o uni.mod *~ core
ftn -c uni.f90
ftn -c percolate.f90
ftn -o percolate percolate.o uni.o

This is fine for small files where the text fits in a single terminal window. For longer files you
can use the less command. less gives you the ability to scroll up and down in the specified file.
For example:

guestXX@archer:~> less percolate.f90

Once in less you can use the spacebar to scroll down and ‘u’ to scroll up. When you have
finished examining the file you can use ‘q’ to exit less and return to the command line.

8

	Introduction
	Getting going on ARCHER
	Log into ARCHER frontend nodes and run commands

	Introduction to Fortran
	Modules
	Derived Types
	Classes
	Inheritance and Overloading
	Appendix
	Detailed Login Instructions
	Procedure for Mac and Linux users
	Procedure for Windows users

	Running commands
	Using the Emacs text editor
	Useful commands for examining files

