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Language evolution
• Ancient History

• Name comes from FORmula TRANslation
• Fortran 66 was the first language to have a standard (1967)

• Fortran 77
• New standard to overcome divergence in different implementations (1978)

• Fortran 90
• Major revision added modules, derived data types, dynamic memory allocation, 

intrinsics
• Retained backward compatibility

• Fortran 95
• Minor revision but added several HPC related features; forall, where, pure,  
elemental, pointers 

• Fortran 2003
• Major revision with many new features including; OO capabilities, procedure 

pointers, IEEE arithmetic, C interoperability

• Fortran 2008
• Minor change: added co-arrays and sub modules



Primarily a procedural language

program hello

variable declarations

program text

function calls

function definitions

end program hello



Software engineering

• Fortran 90 introduced new features

• Structured, sane, safe programming!

• Modules

• Provide excellent possibilities for encapsulation

• Provide interfaces for subroutines (argument type-checking)

• Provide structure

• Portability

• Concept of “type” for data objects

• Opens the way to obtaining portable behaviour, particularly for floating 
point arithmetic

• Subsequent incarnations (95, 2003, 2008) have built on this

• Result is a modern language that is very good for HPC applications



Hello World

• The canonical introductory program
program hello

! Display a message to standard output  (usually the screen)

implicit none

write (unit = *, fmt = *) ””””Hello World!”

end program hello

• Basic syntax is based on lines

• Statements occupy lines of up to 132 characters

• Case insensitive (c.f. C, C++, Java)

• Comments are introduced with an exclamation mark !

• You will see many variations in style



Main program and syntax
• Formally main program

[program program-name]

[specification-statements]

[executable-statements]

end [program [program-name]]

• Text inside square brackets [] is optional 

• Long lines can be split using continuation &

write (unit = *, fmt = *) &

””””Long and somewhat convoluted Hello World line!”

• Multiple statements on a single line
• Can be split using a semi-colon ;

• Not recommended for readability – use one statement per line



Variables
• Intrinsic data types are declared
implicit none ! Enforce strong typing

integer    :: i ! 10 

real       :: a ! 3.14159

character  :: letter ! a

character (len = 12) :: month ! January

logical    :: switch ! .false.

complex    :: z0, z1 ! (1.0, 1.0)

• Variables

• Must be declared before any executable statements

• Have an acceptable name made up of alphanumeric characters (or 
underscores _) of which the first character must be a letter

• Acceptable: a1, a_letter, a123b

• Not acceptable: 1abc, quid$in



Implicit None
• Undeclared variables always have an implicit type

• If the first letter begins with an i, j, k, l, n, m type is integer

• If the first letter begins with any other letter type is real

• Implicit typing is very dangerous and should always be 
turned off using implicit none

• Consider the following

real :: l1 = 1.2345

write(*,*)””””The value of l1 = ””””, ll

• The variable ll is implicitly assumed to be of integer type 

• The compiler will not complain

• Using implicit none would catch this typographical error

• Can be very difficult to debug



Variable initialisation
• Variables can be initialised either at point of declaration
program initial_declare

implicit none

integer :: i = 10

real :: pi = 3.14159

character (len = 12) :: month = ””””January””””

end program initial_declare

• Or within the main program
complex   :: ci

logical :: iostatus

ci = (0.0, 1.0)

iostatus = .true.

• Beware: initialising arrays at declaration can result in very 

large executable sizes (intialised at compile time)



Arrays
• Arrays hold a collection of values at the same time

• Elements are accessed by subscripting the array
• A 10 element 1D array can be visualised as:

• A 4x2, 2D array can be visualised as:

• In Fortran arrays are stored in memory by columns – known as 

column major (C, C++, Java all store by row)

1 2 3 4 5 6 7 8 9 10

1,1 1,2

2,1 2,2

3,1 3,2

4,1 4,2
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Arrays
• Arrays are declared with dimension attribute
implicit none

integer, dimension(4) :: n4

• Provides 4 elements
• Elements: n4(1), n4(2), n4(3), n4(4)

• First element is, by default, 1

• Can set the lower and upper bounds
real, dimension(-5:4) :: r

• Elements: r(-5), r(-4), … r(0), … r(4)

• Total number of elements in the array is the size

• Here n4 has size = 4 and r has size = 10



Multidimensional arrays
• Arrays can have more than one dimension

complex, dimension(1:10, 1:20) :: z

• Terminology

• Number of dimensions is the rank (here 2)

• Number of elements in given dimension is the extent

• Sequence of the extents is the shape, here (10, 20)

• Up to 7 dimensions are allowed
real, dimension(2, 3, 4, 5, 6, 1) :: vast

• Has six dimensions (i.e., rank 6)

• Extent in the fourth dimension is 5

• Shape is (2, 3, 4, 5, 6, 1)

• Size is 2x3x4x5x6x1 = 720 elements



More on character variables

• Declared in similar way to numeric types

• Character variables can

• Refer to a single character

• Refer to a string (achieved by adding a length specifier)

• The following are all valid declarations
character             :: sex

character (len = 20)  :: name

character (len = 10), dimension(10,10) :: carray

• Assigned using either double ”””””””” or single quotes ’’’’’’’’
sex = ’f’

name = ””””Joe Bloggs””””



Parameter attribute
• Named constants may be defined and used

integer, parameter   :: n = 100

real, dimension(2*n) :: r

real, parameter      :: pi = 3.14

• Values set at compile time must not change

• Constant expressions involving parameters are evaluated at compile 
time

• Attempt to assign a new value will give a compiler error

• Any intrinsic type may have the parameter attribute, including arrays

• The general declaration is
type [, attributes] :: variable



Types
• Floating point variables

• Variables declared real are of default precision

• Standard does not specify what this is (but usually 4 bytes)

• Mechanism for ensuring get desired type

• E.g., by specifying the range or decimal precision required

• Uses the kind type parameter (processor dependent) 

integer, parameter :: sp = kind(1.0)

real (kind = sp), dimension(10) :: variable

• Extended precision (double)
integer, parameter :: dp = kind(1.0d0)

real (kind = dp)   :: variable



Numerical expressions
• Arithmetic operators are

**     ! exponentiation

*      ! multiplication

/      ! division

+      ! addition

- ! subtraction

– decreasing order of precedence

• Otherwise expressions evaluated left-to-right
– e.g., a*b*c evaluated as (a*b)*c
– Except a**b**c evaluated as a**(b**c)

• Care! Integer division rounded toward zero
– e.g., (2*4)/5 gives 1 but 2*(4/5) gives 0

• Type promotion during arithmetic
– Promotes to higher type, e.g. integer * real = real



• Promotion during arithmetic (+ - * /)

• Expression a operator b is evaluated as

type of a     type of b    type of result

integer       integer      integer

integer       real         real

integer       complex      complex

real          real         real

real          complex      complex

complex       complex      complex

• Explicit conversions are also possible
• Intrinsic functions int(), real(), cmplx()

• e.g., z = cmplx(r1,r2), where r1 and r2 are variables of type real 

containing the real and imaginary parts of the complex number 
respectively

Mixed assignments



Intrinsic functions
• Over 100 intrinsic functions in Fortran 2008

• array operations, bit manipulations, character strings

• check whether there’s an intrinsic available (List of intrinsic functions in Metcalf 
and Reid or the Standard) 

• Conversion

int() real() cmplx() abs() nint() aint() aimag()

ceiling() floor()

• Mathematical

sqrt(x) exp(x) log(x) log10(x)

sin(x) cos(x) tan(x) asin(x) acos(x) atan(x) sinh(x)

cosh(x) tanh(x)

• Others

min(x1, x2, ...) max(x1, x2, ...) mod(a, p) 

conjg() tiny(x) huge(x)



Relational operators

• These are
<      ! less than            

<=     ! less than or equal

>  ! greater than

>= ! greater than or equal

==     ! equal

/=     ! not equal

• Logical expressions are then, e.g.,
a < b

char1 == ””””a””””

a+b >= c+d

• For integer and real numeric types
• Not complex



Logical operators
• Logical variables take on one of two values 
.true.

.false.

• Relational operators are
.not.          ! unary not

.and.          ! logical and

.or.           ! logical or

.eqv.          ! equivalent

.neqv.         ! not equivalent

• Decreasing order of precedence
• e.g.,  i .or. j .and. .not. k evaluated as                           i
.or. (j .and. (.not. k))



Conditionals

• Very similar to other languages 
if (logical-expression) then

block

[else if (logical-expression) then

block]...

[else

block]

end if

• May be nested

• but not interleaved

• Also a select case statement (cf switch in Java)



Select case
• Select case provides an alternative to a series of repeated 
if...then...else if statements

• The general form of the case construct is
[name:] select case (expression)

[case selector [name]

block]...

[case default

block]

end select [name]

• Where expression can be any of 
• A single integer, character, or logical depending on type

• min: any value from a minimum value upwards

• :max any value from a maximum value downwards

• min : : max any value between the two limits



Loops
• Bounded iteration 
do n = 1, 100

! do something

end do

• Formally
do [variable = expr1, expr2[, expr3]]

block

end do

• where expr1, expr2, and expr3 are integers

• number of iterations will be max(0, (expr2-expr1+expr3)/expr3)

• Arbitrary stride is allowed (including negative stride)
do n = 10, 1, -2

!  do something

end do



Controlling loops
• Unbounded loop
do

! go around for ever

end do

• Can be terminated with exit

do

! do some computation

if (condition) exit ! exits from current loop

! do something else

end do

• Can also go to next iteration using cycle



Simple I/O

• The print statement is the simplest form of directing 

unformatted data to the standard output

print*,””””The temperature is ””””,temperature,”””” degrees””””

• Each print statement begins on a new line

• Print statement can transfer any object of intrinsic type to standard output

• Strings are delimited by either double ”””” ”””” or single ’’’’ ’’’’ quotes

• Two occurrences of string delimiter produce one occurrence in the output, 
e.g. print*,””””Fred says ””””””””Hello!””””””””””””

• print only allows access to standard output – screen

• write() is much more useful as it can also handle files



Simple I/O – write statement
• Use write() statement

write ([unit =] unit, &

[fmt =] format_string ...) [list]

• can take default write (*,*)

• i.e., standard output and free format

• To write to an external file
open (unit = 20, file = ””””file.dat””””, &

form = ””””formatted””””, action = ””””write””””)

write (unit = 20, fmt = *) [list]

close (unit = 20, status = ””””keep””””)

• Input is via read()

• e.g. read(*,*)temperature to read the value of temperature from 

the keyboard



Summary

• Fortran is an evolving language

• Now has many powerful features

• Natural language for scientific / engineering problems

• Hence commonly found in HPC applications

• Vast amount of legacy code

• Generally a procedural language



Exercise

• Basic Fortran exercises

• Logging on to ARCHER

• Course material at:

• http://tinyurl.com/archer270218

Password: 5bI8LtOIVKtU

• CFD Practical

• Get the source: wget

http://tinyurl.com/archer270218/Exercises/cfd.tar.gz

• Writing some basic Fortran programs

• Starting the percolate practical



Conditionals (example)
• For example
if (t < 0) then

! It’s cold

ice = .true.

else if (t > 100) then

! It’s hot

steam = .true.

else

water = .true.

wet = .true.

washout = .true.

end if



Select case (example)

• General form of selector is a list of non-overlapping values/ ranges of 

the same type as expression

• Values of expression not included in selector can be caught by 

case default, e.g.
seasons: select case (month) ! month is of type integer

case (1:2,12) ! Winter, Dec, Jan, Feb

write(*,*)””””It is winter””””

case(3:5) ! Spring, Mar, Apr, May

write(*,*)””””It is spring””””

case(6:8) ! Summer, Jun, Jul, Aug

write(*,*)””””It is summer””””

case(9:11) ! Autumn, Sep, Oct, Nov

write(*,*)””””It is autumn””””

case default ! if month outside 1-12

write(*,*)"Must enter 1-12"

end select seasons



Controlling iteration (example)
mainloop: do

write(*,*)””””Input student id””””

read(*,*)stid

if (stid == 0) exit mainloop

average = 0

innerloop: do i = 1, 5

write(*,*)””””Please enter mark””””

read(*,*)mark

if (mark < 0) then 

write(*,*)””””Mark < 0, start again””””

cycle mainloop

end if

average = average + mark

end do innerloop

average = average/5.0

write(*,*)””””Average of student””””,stid,”””” is = ””””,average

end do mainloop



Simple I/O – write statement

• Can use write and read statements to access 
standard input (i.e. screen and keyboard)

write(*,*)””””This text will appear on the screen””””

write(*,*)””””Input temperature (C)””””

read(*,*)temperature ! Reads value input via 

! the keyboard and assigns 

! to variable 

temperature

• Multiple values can be read in from a single line

write(*,*)””””Input 3 results””””

read(*,*)result1,result2,result3



Simple I/O – unknown file length 

• To continue reading values from an external file until the end of the file is 

reached
integer :: i, icount = 0

integer, parameter :: maxln=500

real, dimension(maxln) :: a

open(unit=10, file=””””temps.dat””””, status=””””old””””, action=””””read””””)

do i = 1, maxln

read(10,*,end=100)a(i)

icount = icount + 1

end do 

100 continue  ! 100 is a label

close(10)

write(*,*)””””No. of lines read in from file =””””,icount

. . . 


