
Introduction to Fortran

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the material
under the following terms: You must give appropriate credit, provide a link to the license and

indicate if changes were made. If you adapt or build on the material you must distribute your work
under the same license as the original.

Note that this presentation may contain images owned by others. Please seek their permission
before reusing these images.

Language evolution
• Ancient History

• Name comes from FORmula TRANslation
• Fortran 66 was the first language to have a standard (1967)

• Fortran 77
• New standard to overcome divergence in different implementations (1978)

• Fortran 90
• Major revision added modules, derived data types, dynamic memory allocation,

intrinsics
• Retained backward compatibility

• Fortran 95
• Minor revision but added several HPC related features; forall, where, pure,
elemental, pointers

• Fortran 2003
• Major revision with many new features including; OO capabilities, procedure

pointers, IEEE arithmetic, C interoperability

• Fortran 2008
• Minor change: added co-arrays and sub modules

Primarily a procedural language

program hello

variable declarations

program text

function calls

function definitions

end program hello

Software engineering

• Fortran 90 introduced new features

• Structured, sane, safe programming!

• Modules

• Provide excellent possibilities for encapsulation

• Provide interfaces for subroutines (argument type-checking)

• Provide structure

• Portability

• Concept of “type” for data objects

• Opens the way to obtaining portable behaviour, particularly for floating
point arithmetic

• Subsequent incarnations (95, 2003, 2008) have built on this

• Result is a modern language that is very good for HPC applications

Hello World

• The canonical introductory program
program hello

! Display a message to standard output (usually the screen)

implicit none

write (unit = *, fmt = *) ””””Hello World!”

end program hello

• Basic syntax is based on lines

• Statements occupy lines of up to 132 characters

• Case insensitive (c.f. C, C++, Java)

• Comments are introduced with an exclamation mark !

• You will see many variations in style

Main program and syntax
• Formally main program

[program program-name]

[specification-statements]

[executable-statements]

end [program [program-name]]

• Text inside square brackets [] is optional

• Long lines can be split using continuation &

write (unit = *, fmt = *) &

””””Long and somewhat convoluted Hello World line!”

• Multiple statements on a single line
• Can be split using a semi-colon ;

• Not recommended for readability – use one statement per line

Variables
• Intrinsic data types are declared
implicit none ! Enforce strong typing

integer :: i ! 10

real :: a ! 3.14159

character :: letter ! a

character (len = 12) :: month ! January

logical :: switch ! .false.

complex :: z0, z1 ! (1.0, 1.0)

• Variables

• Must be declared before any executable statements

• Have an acceptable name made up of alphanumeric characters (or
underscores _) of which the first character must be a letter

• Acceptable: a1, a_letter, a123b

• Not acceptable: 1abc, quid$in

Implicit None
• Undeclared variables always have an implicit type

• If the first letter begins with an i, j, k, l, n, m type is integer

• If the first letter begins with any other letter type is real

• Implicit typing is very dangerous and should always be
turned off using implicit none

• Consider the following

real :: l1 = 1.2345

write(*,*)””””The value of l1 = ””””, ll

• The variable ll is implicitly assumed to be of integer type

• The compiler will not complain

• Using implicit none would catch this typographical error

• Can be very difficult to debug

Variable initialisation
• Variables can be initialised either at point of declaration
program initial_declare

implicit none

integer :: i = 10

real :: pi = 3.14159

character (len = 12) :: month = ””””January””””

end program initial_declare

• Or within the main program
complex :: ci

logical :: iostatus

ci = (0.0, 1.0)

iostatus = .true.

• Beware: initialising arrays at declaration can result in very

large executable sizes (intialised at compile time)

Arrays
• Arrays hold a collection of values at the same time

• Elements are accessed by subscripting the array
• A 10 element 1D array can be visualised as:

• A 4x2, 2D array can be visualised as:

• In Fortran arrays are stored in memory by columns – known as

column major (C, C++, Java all store by row)

1 2 3 4 5 6 7 8 9 10

1,1 1,2

2,1 2,2

3,1 3,2

4,1 4,2

Dimension 2

D
im

e
n

s
io

n
 1

Arrays
• Arrays are declared with dimension attribute
implicit none

integer, dimension(4) :: n4

• Provides 4 elements
• Elements: n4(1), n4(2), n4(3), n4(4)

• First element is, by default, 1

• Can set the lower and upper bounds
real, dimension(-5:4) :: r

• Elements: r(-5), r(-4), … r(0), … r(4)

• Total number of elements in the array is the size

• Here n4 has size = 4 and r has size = 10

Multidimensional arrays
• Arrays can have more than one dimension

complex, dimension(1:10, 1:20) :: z

• Terminology

• Number of dimensions is the rank (here 2)

• Number of elements in given dimension is the extent

• Sequence of the extents is the shape, here (10, 20)

• Up to 7 dimensions are allowed
real, dimension(2, 3, 4, 5, 6, 1) :: vast

• Has six dimensions (i.e., rank 6)

• Extent in the fourth dimension is 5

• Shape is (2, 3, 4, 5, 6, 1)

• Size is 2x3x4x5x6x1 = 720 elements

More on character variables

• Declared in similar way to numeric types

• Character variables can

• Refer to a single character

• Refer to a string (achieved by adding a length specifier)

• The following are all valid declarations
character :: sex

character (len = 20) :: name

character (len = 10), dimension(10,10) :: carray

• Assigned using either double ”””””””” or single quotes ’’’’’’’’
sex = ’f’

name = ””””Joe Bloggs””””

Parameter attribute
• Named constants may be defined and used

integer, parameter :: n = 100

real, dimension(2*n) :: r

real, parameter :: pi = 3.14

• Values set at compile time must not change

• Constant expressions involving parameters are evaluated at compile
time

• Attempt to assign a new value will give a compiler error

• Any intrinsic type may have the parameter attribute, including arrays

• The general declaration is
type [, attributes] :: variable

Types
• Floating point variables

• Variables declared real are of default precision

• Standard does not specify what this is (but usually 4 bytes)

• Mechanism for ensuring get desired type

• E.g., by specifying the range or decimal precision required

• Uses the kind type parameter (processor dependent)

integer, parameter :: sp = kind(1.0)

real (kind = sp), dimension(10) :: variable

• Extended precision (double)
integer, parameter :: dp = kind(1.0d0)

real (kind = dp) :: variable

Numerical expressions
• Arithmetic operators are

** ! exponentiation

* ! multiplication

/ ! division

+ ! addition

- ! subtraction

– decreasing order of precedence

• Otherwise expressions evaluated left-to-right
– e.g., a*b*c evaluated as (a*b)*c
– Except a**b**c evaluated as a**(b**c)

• Care! Integer division rounded toward zero
– e.g., (2*4)/5 gives 1 but 2*(4/5) gives 0

• Type promotion during arithmetic
– Promotes to higher type, e.g. integer * real = real

• Promotion during arithmetic (+ - * /)

• Expression a operator b is evaluated as

type of a type of b type of result

integer integer integer

integer real real

integer complex complex

real real real

real complex complex

complex complex complex

• Explicit conversions are also possible
• Intrinsic functions int(), real(), cmplx()

• e.g., z = cmplx(r1,r2), where r1 and r2 are variables of type real

containing the real and imaginary parts of the complex number
respectively

Mixed assignments

Intrinsic functions
• Over 100 intrinsic functions in Fortran 2008

• array operations, bit manipulations, character strings

• check whether there’s an intrinsic available (List of intrinsic functions in Metcalf
and Reid or the Standard)

• Conversion

int() real() cmplx() abs() nint() aint() aimag()

ceiling() floor()

• Mathematical

sqrt(x) exp(x) log(x) log10(x)

sin(x) cos(x) tan(x) asin(x) acos(x) atan(x) sinh(x)

cosh(x) tanh(x)

• Others

min(x1, x2, ...) max(x1, x2, ...) mod(a, p)

conjg() tiny(x) huge(x)

Relational operators

• These are
< ! less than

<= ! less than or equal

> ! greater than

>= ! greater than or equal

== ! equal

/= ! not equal

• Logical expressions are then, e.g.,
a < b

char1 == ””””a””””

a+b >= c+d

• For integer and real numeric types
• Not complex

Logical operators
• Logical variables take on one of two values
.true.

.false.

• Relational operators are
.not. ! unary not

.and. ! logical and

.or. ! logical or

.eqv. ! equivalent

.neqv. ! not equivalent

• Decreasing order of precedence
• e.g., i .or. j .and. .not. k evaluated as i
.or. (j .and. (.not. k))

Conditionals

• Very similar to other languages
if (logical-expression) then

block

[else if (logical-expression) then

block]...

[else

block]

end if

• May be nested

• but not interleaved

• Also a select case statement (cf switch in Java)

Select case
• Select case provides an alternative to a series of repeated
if...then...else if statements

• The general form of the case construct is
[name:] select case (expression)

[case selector [name]

block]...

[case default

block]

end select [name]

• Where expression can be any of
• A single integer, character, or logical depending on type

• min: any value from a minimum value upwards

• :max any value from a maximum value downwards

• min : : max any value between the two limits

Loops
• Bounded iteration
do n = 1, 100

! do something

end do

• Formally
do [variable = expr1, expr2[, expr3]]

block

end do

• where expr1, expr2, and expr3 are integers

• number of iterations will be max(0, (expr2-expr1+expr3)/expr3)

• Arbitrary stride is allowed (including negative stride)
do n = 10, 1, -2

! do something

end do

Controlling loops
• Unbounded loop
do

! go around for ever

end do

• Can be terminated with exit

do

! do some computation

if (condition) exit ! exits from current loop

! do something else

end do

• Can also go to next iteration using cycle

Simple I/O

• The print statement is the simplest form of directing

unformatted data to the standard output

print*,””””The temperature is ””””,temperature,”””” degrees””””

• Each print statement begins on a new line

• Print statement can transfer any object of intrinsic type to standard output

• Strings are delimited by either double ”””” ”””” or single ’’’’ ’’’’ quotes

• Two occurrences of string delimiter produce one occurrence in the output,
e.g. print*,””””Fred says ””””””””Hello!””””””””””””

• print only allows access to standard output – screen

• write() is much more useful as it can also handle files

Simple I/O – write statement
• Use write() statement

write ([unit =] unit, &

[fmt =] format_string ...) [list]

• can take default write (*,*)

• i.e., standard output and free format

• To write to an external file
open (unit = 20, file = ””””file.dat””””, &

form = ””””formatted””””, action = ””””write””””)

write (unit = 20, fmt = *) [list]

close (unit = 20, status = ””””keep””””)

• Input is via read()

• e.g. read(*,*)temperature to read the value of temperature from

the keyboard

Summary

• Fortran is an evolving language

• Now has many powerful features

• Natural language for scientific / engineering problems

• Hence commonly found in HPC applications

• Vast amount of legacy code

• Generally a procedural language

Exercise

• Basic Fortran exercises

• Logging on to ARCHER

• Course material at:

• http://tinyurl.com/archer270218

Password: 5bI8LtOIVKtU

• CFD Practical

• Get the source: wget

http://tinyurl.com/archer270218/Exercises/cfd.tar.gz

• Writing some basic Fortran programs

• Starting the percolate practical

Conditionals (example)
• For example
if (t < 0) then

! It’s cold

ice = .true.

else if (t > 100) then

! It’s hot

steam = .true.

else

water = .true.

wet = .true.

washout = .true.

end if

Select case (example)

• General form of selector is a list of non-overlapping values/ ranges of

the same type as expression

• Values of expression not included in selector can be caught by

case default, e.g.
seasons: select case (month) ! month is of type integer

case (1:2,12) ! Winter, Dec, Jan, Feb

write(*,*)””””It is winter””””

case(3:5) ! Spring, Mar, Apr, May

write(*,*)””””It is spring””””

case(6:8) ! Summer, Jun, Jul, Aug

write(*,*)””””It is summer””””

case(9:11) ! Autumn, Sep, Oct, Nov

write(*,*)””””It is autumn””””

case default ! if month outside 1-12

write(*,*)"Must enter 1-12"

end select seasons

Controlling iteration (example)
mainloop: do

write(*,*)””””Input student id””””

read(*,*)stid

if (stid == 0) exit mainloop

average = 0

innerloop: do i = 1, 5

write(*,*)””””Please enter mark””””

read(*,*)mark

if (mark < 0) then

write(*,*)””””Mark < 0, start again””””

cycle mainloop

end if

average = average + mark

end do innerloop

average = average/5.0

write(*,*)””””Average of student””””,stid,”””” is = ””””,average

end do mainloop

Simple I/O – write statement

• Can use write and read statements to access
standard input (i.e. screen and keyboard)

write(*,*)””””This text will appear on the screen””””

write(*,*)””””Input temperature (C)””””

read(*,*)temperature ! Reads value input via

! the keyboard and assigns

! to variable

temperature

• Multiple values can be read in from a single line

write(*,*)””””Input 3 results””””

read(*,*)result1,result2,result3

Simple I/O – unknown file length

• To continue reading values from an external file until the end of the file is

reached
integer :: i, icount = 0

integer, parameter :: maxln=500

real, dimension(maxln) :: a

open(unit=10, file=””””temps.dat””””, status=””””old””””, action=””””read””””)

do i = 1, maxln

read(10,*,end=100)a(i)

icount = icount + 1

end do

100 continue ! 100 is a label

close(10)

write(*,*)””””No. of lines read in from file =””””,icount

. . .

