
Advanced Parallel

Programming
Derived Datatypes

ARCHER Training

Courses
Sponsors

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Overview

• Lecture will cover

- derived datatypes

- memory layouts

- vector datatypes

- floating vs fixed datatypes

- subarray datatypes

4

My Coordinate System (how I draw

arrays)

5

x[i][j]

x(i,j)

x[0][3]

x[0][2]

x[0][1]

x[0][0]

i

j

x[1][3]

x[1][2]

x[1][1]

x[1][0]

x[2][3]

x[2][2]

x[2][1]

x[2][0]

x[3][3]

x[3][2]

x[3][1]

x[3][0]

x(1,4)

x(1,1)

x(1,3)

x(1,2)

x(2,4)

x(2,1)

x(2,3)

x(2,2)

x(3,4)

x(3,1)

x(3,3)

x(3,2)

x(4,4)

x(4,1)

x(4,3)

x(4,2)

Basic Datatypes
• MPI has a number of pre-defined datatypes

- eg MPI_INT / MPI_INTEGER, MPI_FLOAT / MPI_REAL

- user passes them to send and receive operations

• For example, to send 4 integers from an array x

6

C: int[10];

F: INTEGER x(10)

MPI_Send(x, 4, MPI_INT, ...);

MPI_SEND(x, 4, MPI_INTEGER, ...)

Derived Datatypes
• Can send different data by specifying different buffer

7

MPI_Send(&x[2], 4, MPI_INT, ...);

MPI_SEND(x(3), 4, MPI_INTEGER, ...)

• Can define new datatypes called derived types

– various different options in MPI

– we will use them to send data with gaps in it: a vector type

– other MPI derived types correspond to, for example, C structs

– but can only send a single block of contiguous data

Simple Example
• Contiguous type

MPI Datatype my_new_type;

MPI_Type_contiguous(count=4, oldtype=MPI_INT, newtype=&my_new_type);

MPI_Type_commit(&my_new_type);

INTEGER MY_NEW_TYPE

CALL MPI_TYPE_CONTIGUOUS(4, MPI_INTEGER, MY_NEW_TYPE, IERROR)

CALL MPI_TYPE_COMMIT(MY_NEW_TYPE, IERROR)

8

MPI_Send(x, 1, my_new_type, ...);

MPI_SEND(x, 1, MY_NEW_TYPE, ...)

• Vector types correspond to patterns such as

Array Layout in Memory

• Data is contiguous in memory

- different conventions in C and Fortran

- for statically allocated C arrays x == &x[0][0]

9

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

1

5

13

2

6

10

14

3

7

11

15

4

8

12

16

9 3

C: x[4][4] F: x(4,4)

1 5 13 2 6 10 14 3 7 11 15 4 8 12 16 9

C: x[16] F: x(16)

i

j

Process Grid
• I use C convention for process coordinates, even in Fortran

- ie processes always ordered as for C arrays

• and array indices also start from 0

• Why?

- this is what is returned by MPI for cartesian topologies

- turns out to be convenient for future exercises

• Example: process rank layout on a 4x4 process grid

- rank 6 is at position (1,2), ie i = 1 and j = 2, for C and Fortran

10
0

1

3

4

5

6

7

8

9

10

11

12

13

14

15

2

i

j

Aside: Dynamic Arrays in C

• Data non-contiguous, and x != &x[0][0]

- cannot use regular templates such as vector datatypes

- cannot pass x to any MPI routine

11

float **x = (float **) malloc(4, sizeof(float *));

for (i=0; i < 4; i++)

{

 x[i] = (float *) malloc(4, sizeof(float));

}

1

5
13

2

6

10

14

3

7

11

15

4

8

12

16

9

x

x[0] x[1] x[3] x[2]

Arralloc

• Data is now contiguous, but still x != &x[0][0]

- can now use regular template such as vector datatype

- must pass &x[0][0] (start of contiguous data) to MPI routines

- see PSMA-arralloc.tar for example of use in practice

• Will illustrate all calls using &x[i][j] syntax

- correct for both static and (contiguously allocated) dynamic arrays

12

float **x = (float **) arralloc(sizeof(float), 2, 4, 4);

/* do some work */

free((void *) x);

1 5 13 2 6 10 3 7 11 4 8 12 9 x x[0] x[1] x[3] x[2]

Array Subsections in Memory

13

C: x[5][4]

F: x(5,4)

Equivalent Vector Datatypes

14

stride = 4

blocklength = 2
count = 3

stride = 5

blocklength = 3
count = 2

Definition in MPI
MPI_Type_vector(int count, int blocklength, int stride,

 MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE,

 OLDTYPE, NEWTYPE, IERR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE

INTEGER NEWTYPE, IERR

MPI_Datatype vector3x2;

MPI_Type_vector(3, 2, 4, MPI_FLOAT, &vector3x2)

MPI_Type_commit(&vector3x2)

integer vector3x2

call MPI_TYPE_VECTOR(2, 3, 5, MPI_REAL, vector3x2, ierr)

call MPI_TYPE_COMMIT(vector3x2, ierr)

15

Datatypes as Floating Templates

16

Choosing the Subarray Location

17

MPI_Send(&x[1][1], 1, vector3x2, ...);

MPI_SEND(x(2,2) , 1, vector3x2, ...)

MPI_Send(&x[2][1], 1, vector3x2, ...);

MPI_SEND(x(3,2) , 1, vector3x2, ...)

MPI_Send(&x[0][0], 1, vector3x2, ...);

MPI_SEND(x(1,1) , 1, vector3x2, ...)

Datatype Extents
• When sending multiple datatypes

- datatypes are read from memory separated by their extent

- for basic datatypes, extent is the size of the object

- for vector datatypes, extent is distance from first to last data

18

extent = 10*extent(basic type)

extent = 8*extent(basic type)

• Extent does not include trailing spaces

Sending Multiple Vectors

19

MPI_Send(&x[0][0], 1, vector3x2, ...);

MPI_SEND(x(1,1) , 1, vector3x2, ...)

MPI_Send(&x[0][0], 2, vector3x2, ...);

MPI_SEND(x(1,1) , 2, vector3x2, ...)

C F

Issues with Vectors

• Sending multiple vectors is not often useful
- extents are not defined as you might expect for 2D arrays

• A 3D array subsection is not a vector
- but cannot easily use 2D vectors as building blocks due to extents

- becomes even harder for higher-dimensional arrays

• It is possible to set the extent manually
- routine is called MPI_Type_create_resized

- this is not a very elegant solution

• For example, difficult to use vectors with MPI_Scatter to
scatter 2D datasets

20

Aside: MPI_Scatter for master IO

• Problem (i): displacements are not constant

- here, offsets from origin are 0, 2, 8 and 10 (floats)

• Solution

- use MPI_Scatterv which takes separate displacement for each rank

• Problem (ii): displacements multiplied by extent = 6 floats

- required offsets are not an integer multiple of the extent!

• Solution

- use MPI_Type_create_resized to reset extent to, e.g., one float

21

9

10

13

14

1

2

3

4

5

6

7

8

11

12

15

16

Floating vs Fixed Datatypes
• Vectors are “floating” datatypes

- this may have some advantages, eg define a single halo datatype and

use for both up and down halos

- actual location is selected by passing address of appropriate element

- equivalent in MPI-IO is specifying a displacement into the file

• this will turn out to be rather clumsy

• “Fixed” datatype

- always pass starting address of array

- datatype encodes both the shape and position of the subarray

• How do we define a fixed datatype?

- requires a datatype with leading spaces

- difficult to do with vectors

- using MPI_Type_create_resized very ugly

22

Subarray Datatype
• A single call that defines multi-dimensional subsections

- much easier than vector types for 3D arrays

- datatypes are fixed

- pass the starting address of the array to all MPI calls

MPI_Type_create_subarray(int ndims, int array_of_sizes[],

int array_of_subsizes[], int array_of_starts[],

int order, MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES,

ARRAY_OF_SUBSIZES, ARRAY_OF_STARTS, ORDER,

OLDTYPE, NEWTYPE, IERR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

 ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERR

23

C Definition
#define NDIMS 2

MPI_Datatype subarray3x2;

int array_of_sizes[NDIMS], array_of_subsizes[NDIMS],

 arrays_of_starts[NDIMS];

array_of_sizes[0] = 5; array_of_sizes[1] = 4;

array_of_subsizes[0] = 3; array_of_subsizes[1] = 2;

array_of_starts[0] = 2; array_of_starts[1] = 1;

order = MPI_ORDER_C;

MPI_type_create_subarray(NDIMS, array_of_sizes,

array_of_subsizes, array_of_starts, order,

MPI_FLOAT, &subarray3x2);

MPI_TYPE_COMMIT(&subarray3x2);

24

Fortran Definition
integer, parameter :: ndims = 2

integer subarray3x2

integer, dimension(ndims) :: array_of_sizes,

array_of_subsizes,

 arrays_of_starts

! Indices start at 0 as in C !

array_of_sizes(1) = 5; array_of_sizes(2) = 4

array_of_subsizes(1) = 3; array_of_subsizes(2) = 2

array_of_starts(1) = 2; array_of_starts(2) = 1

order = MPI_ORDER_FORTRAN

call MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes,

array_of_subsizes, array_of_starts, order,

MPI_REAL, subarray3x2, ierr)

25

Usage

• Generalisation to IO

- each process counts from the start of the file

- each process has a different subarray datatype

- actual displacements from file origin depend on the position of the
process in the process array

- this is all already encoded in the datatype

26

MPI_Send(&x[0][0], 1, subarray3x2, ...);

MPI_SEND(x , 1, subarray3x2, ...)

MPI_SEND(x(1,1) , 1, subarray3x2, ...)

Notes (i): Matching messages

• A datatype is defined by two attributes:

- type signature: a list of the basic datatypes in order

- type map: the locations (displacements) of each basic datatype

• For a receive to match a send only signatures need to match

- type map is defined by the receiving datatype

• Think of messages being packed for transmission by sender

- and independently unpacked by the receiver

27

send

recv

Notes(ii): Message Matching

Send(1, subarray3x2) matches Recv(6, MPI_FLOAT)

Send(1, subarray3x2) matches Recv(1, subarray2x3)

• Can be useful when scattering data directly to array with halos

28

Notes (iii)
• There is an overhead to defining a derived type

- a real code may have many calls to the IO routines

- no need to re-define the data types every time

- array sizes unlikely to change: define types once at start of program

• If you do create lots of derived types in a program ...

- they take up memory!

- clear up the memory using MPI_Type_free whenever possible

• But try and avoid:

- do loop = 1, 1000000

• do stuff

• define type

• use type

• free type

- end do

29

