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Overview 

• Lecture will cover 

- derived datatypes 

- memory layouts 

- vector datatypes 

- floating vs fixed datatypes 

- subarray datatypes 
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My Coordinate System (how I draw 

arrays) 
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Basic Datatypes 
• MPI has a number of pre-defined datatypes 

- eg MPI_INT / MPI_INTEGER, MPI_FLOAT / MPI_REAL 

- user passes them to send and receive operations 
 

• For example, to send 4 integers from an array x 

6 

C: int[10]; 

F: INTEGER x(10) 

MPI_Send(x, 4, MPI_INT, ...); 

MPI_SEND(x, 4, MPI_INTEGER, ...) 



Derived Datatypes 
• Can send different data by specifying different buffer 
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MPI_Send(&x[2], 4, MPI_INT, ...); 

MPI_SEND(x(3),  4, MPI_INTEGER, ...) 

• Can define new datatypes called derived types 

– various different options in MPI 

– we will use them to send data with gaps in it: a vector type 

– other MPI derived types correspond to, for example, C structs 

– but can only send a single block of contiguous data 
 



Simple Example 
• Contiguous type 

 

MPI Datatype my_new_type; 

MPI_Type_contiguous(count=4, oldtype=MPI_INT, newtype=&my_new_type); 

MPI_Type_commit(&my_new_type); 

 

INTEGER MY_NEW_TYPE 

CALL MPI_TYPE_CONTIGUOUS(4, MPI_INTEGER, MY_NEW_TYPE, IERROR) 

CALL MPI_TYPE_COMMIT(MY_NEW_TYPE, IERROR) 
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MPI_Send(x, 1, my_new_type, ...); 

MPI_SEND(x, 1, MY_NEW_TYPE, ...) 

• Vector types correspond to patterns such as 



Array Layout in Memory 

• Data is contiguous in memory 

- different conventions in C and Fortran 

- for statically allocated C arrays x == &x[0][0] 
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Process Grid 
• I use C convention for process coordinates, even in Fortran 

- ie processes always ordered as for C arrays 

• and array indices also start from 0 

• Why? 

- this is what is returned by MPI for cartesian topologies 

- turns out to be convenient for future exercises 

• Example: process rank layout on a 4x4 process grid 

- rank 6 is at position (1,2), ie i = 1 and j = 2, for C and Fortran 
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Aside: Dynamic Arrays in C 

• Data non-contiguous, and x != &x[0][0] 

- cannot use regular templates such as vector datatypes 

- cannot pass x to any MPI routine 

11 

float **x = (float **) malloc(4, sizeof(float *)); 

 

for (i=0; i < 4; i++) 

{ 

  x[i] = (float *) malloc(4, sizeof(float)); 

} 
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Arralloc 

• Data is now contiguous, but still x != &x[0][0] 

- can now use regular template such as vector datatype 

- must pass &x[0][0] (start of contiguous data) to MPI routines 

- see PSMA-arralloc.tar for example of use in practice 

 

• Will illustrate all calls using &x[i][j] syntax  

- correct for both static and (contiguously allocated) dynamic arrays 
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float **x = (float **) arralloc(sizeof(float), 2, 4, 4); 

/* do some work */ 

free((void *) x); 

1 5 13 2 6 10 3 7 11 4 8 12 9 x x[0] x[1] x[3] x[2] 



Array Subsections in Memory 
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C: x[5][4] 

F: x(5,4) 



Equivalent Vector Datatypes 
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stride = 4 

blocklength = 2 
count = 3 

stride = 5 

blocklength = 3 
count = 2 



Definition in MPI 
MPI_Type_vector(int count, int blocklength, int stride,        

      MPI_Datatype oldtype, MPI_Datatype *newtype); 

 

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE,                   

      OLDTYPE, NEWTYPE, IERR) 

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE 

INTEGER NEWTYPE, IERR 

 

MPI_Datatype vector3x2; 

MPI_Type_vector(3, 2, 4, MPI_FLOAT, &vector3x2) 

MPI_Type_commit(&vector3x2) 

 

integer vector3x2 

call MPI_TYPE_VECTOR(2, 3, 5, MPI_REAL, vector3x2, ierr) 

call MPI_TYPE_COMMIT(vector3x2, ierr) 
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Datatypes as Floating Templates 
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Choosing the Subarray Location 
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MPI_Send(&x[1][1], 1, vector3x2, ...); 

MPI_SEND(x(2,2)  , 1, vector3x2, ...) 

MPI_Send(&x[2][1], 1, vector3x2, ...); 

MPI_SEND(x(3,2)  , 1, vector3x2, ...) 

MPI_Send(&x[0][0], 1, vector3x2, ...); 

MPI_SEND(x(1,1)  , 1, vector3x2, ...) 



Datatype Extents 
• When sending multiple datatypes 

- datatypes are read from memory separated by their extent 

- for basic datatypes, extent is the size of the object 

- for vector datatypes, extent is distance from first to last data 
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extent = 10*extent(basic type) 

extent = 8*extent(basic type) 

• Extent does not include trailing spaces 



Sending Multiple Vectors 
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MPI_Send(&x[0][0], 1, vector3x2, ...); 

MPI_SEND(x(1,1)  , 1, vector3x2, ...) 

MPI_Send(&x[0][0], 2, vector3x2, ...); 

MPI_SEND(x(1,1)  , 2, vector3x2, ...) 

C F 



Issues with Vectors 

• Sending multiple vectors is not often useful 
- extents are not defined as you might expect for 2D arrays 

 

• A 3D array subsection is not a vector 
- but cannot easily use 2D vectors as building blocks due to extents 

- becomes even harder for higher-dimensional arrays 

 

• It is possible to set the extent manually 
- routine is called MPI_Type_create_resized 

- this is not a very elegant solution 

 

• For example, difficult to use vectors with MPI_Scatter to 
scatter 2D datasets 
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Aside: MPI_Scatter for master IO 

• Problem (i): displacements are not constant 

- here, offsets from origin are 0, 2, 8 and 10 (floats) 

 

• Solution 

- use MPI_Scatterv which takes separate displacement for each rank 
 

• Problem (ii): displacements multiplied by extent = 6 floats 

- required offsets are not an integer multiple of the extent! 

 

• Solution 

- use MPI_Type_create_resized to reset extent  to, e.g., one float 
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Floating vs Fixed Datatypes 
• Vectors are “floating” datatypes 

- this may have some advantages, eg define a single halo datatype and 

use for both up and down halos 

- actual location is selected by passing address of appropriate element 

- equivalent in MPI-IO is specifying a displacement into the file 

• this will turn out to be rather clumsy 

• “Fixed” datatype 

- always pass starting address of array 

- datatype encodes both the shape and position of the subarray 

 

• How do we define a fixed datatype? 

- requires a datatype with leading spaces 

- difficult to do with vectors 

- using MPI_Type_create_resized very ugly 
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Subarray Datatype 
• A single call that defines multi-dimensional subsections 

- much easier than vector types for 3D arrays 

- datatypes are fixed 

- pass the starting address of the array to all MPI calls 
 

MPI_Type_create_subarray(int ndims, int array_of_sizes[],     

int array_of_subsizes[], int array_of_starts[],         

int order, MPI_Datatype oldtype, MPI_Datatype *newtype) 

  

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, 

ARRAY_OF_SUBSIZES, ARRAY_OF_STARTS, ORDER,            

OLDTYPE, NEWTYPE, IERR) 

 

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*), 

  ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERR 
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C Definition 
#define NDIMS 2 

MPI_Datatype subarray3x2; 

int array_of_sizes[NDIMS], array_of_subsizes[NDIMS], 

    arrays_of_starts[NDIMS]; 

 

array_of_sizes[0]    = 5; array_of_sizes[1]    = 4; 

array_of_subsizes[0] = 3; array_of_subsizes[1] = 2; 

array_of_starts[0]   = 2; array_of_starts[1]   = 1; 

 

order = MPI_ORDER_C; 

 

MPI_type_create_subarray(NDIMS, array_of_sizes, 

array_of_subsizes, array_of_starts, order,            

MPI_FLOAT, &subarray3x2); 

MPI_TYPE_COMMIT(&subarray3x2); 
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Fortran Definition 
integer, parameter :: ndims = 2 

integer subarray3x2 

integer, dimension(ndims) :: array_of_sizes, 

array_of_subsizes, 

                             arrays_of_starts 

! Indices start at 0 as in C ! 

 

array_of_sizes(1)    = 5; array_of_sizes(2)    = 4 

array_of_subsizes(1) = 3; array_of_subsizes(2) = 2 

array_of_starts(1)   = 2; array_of_starts(2)   = 1 

 

order = MPI_ORDER_FORTRAN 

call MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes, 

array_of_subsizes, array_of_starts, order,            

MPI_REAL, subarray3x2, ierr) 
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Usage 

• Generalisation to IO 

- each process counts from the start of the file 

- each process has a different subarray datatype 

- actual displacements from file origin depend on the position of the 
process in the process array 

- this is all already encoded in the datatype 
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MPI_Send(&x[0][0], 1, subarray3x2, ...); 

MPI_SEND(x       , 1, subarray3x2, ...) 

MPI_SEND(x(1,1)  , 1, subarray3x2, ...) 



Notes (i): Matching messages 

• A datatype is defined by two attributes: 

- type signature: a list of the basic datatypes in order 

- type map: the locations (displacements) of each basic datatype 

• For a receive to match a send only signatures need to match 

- type map is defined by the receiving datatype 

• Think of messages being packed for transmission by sender 

- and independently unpacked by the receiver 
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send 

recv 



Notes(ii): Message Matching 

Send(1, subarray3x2) matches Recv(6, MPI_FLOAT) 

Send(1, subarray3x2) matches Recv(1, subarray2x3) 

• Can be useful when scattering data directly to array with halos 
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Notes (iii) 
• There is an overhead to defining a derived type 

- a real code may have many calls to the IO routines 

- no need to re-define the data types every time 

- array sizes unlikely to change: define types once at start of program 

• If you do create lots of derived types in a program ... 

- they take up memory! 

- clear up the memory using MPI_Type_free whenever possible 

• But try and avoid: 

- do loop = 1, 1000000 

• do stuff 

• define type 

• use type 

• free type 

- end do 
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