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Overview 

• Lecture will cover 

- MPI-IO model 

- basic file handling routines 

- setting the file view 

- achieving performance 
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Comparing MPI-IO and Master IO 

• Have so far defined datatypes appropriate for each 

process 

- and used them to do multiple sends from a master 

• This requires a buffer to hold entire file on master 

- not scalable to many processes due to memory limits 

• MPI-IO model 

- each process defines the datatype for its section of the file 

- these are passed into the MPI-IO routines 

- data is automatically read and transferred directly to local memory 

- there is no single large buffer and no explicit master process 
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MPI-IO Approach 

• Four stages 

- open file 

- set file view 

- read or write data 

- close file 

 

• All the complexity is hidden in setting the file view 

- this is where the derived datatypes appear 

 

• Write is probably more important in practice than read 

- but exercises concentrate on read 

- makes for an easier progression from serial to parallel IO examples 
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Opening a File 
MPI_File_open(MPI_Comm comm, char *filename, int amode, 

              MPI_Info info, MPI_File *fh) 

 

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERR) 

CHARACTER*(*) FILENAME 

INTEGER COMM, AMODE, INFO, FH, IERR 

    

• Attaches a file to the File Handle 

- use this handle in all future IO calls 

- analogous to C file pointer or Fortran unit number 

• Routine is collective across the communicator 

- must be called by all processes in that communicator 

• Access mode specified by amode 

- common values are: MPI_MODE_CREATE,  MPI_MODE_RDONLY, 
MPI_MODE_WRONLY,  MPI_MODE_RDWR 
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Examples 
MPI_File fh; 

int amode = MPI_MODE_RDONLY; 

MPI_File_open(MPI_COMM_WORLD, “data.in”, amode, 

              MPI_INFO_NULL, &fh); 

integer fh 

integer amode = MPI_MODE_RDONLY 

call MPI_FILE_OPEN(MPI_COMM_WORLD, ‘data.in’, amode, 

                   MPI_INFO_NULL, fh, ierr) 

 

• Must specify create as well as write for new files 

  int     amode = MPI_MODE_CREATE | MPI_MODE_WRONLY; 

  integer amode = MPI_MODE_CREATE + MPI_MODE_WRONLY 

 

- will return to the info argument later 
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Closing a File 

MPI_File_close(MPI_File *fh) 

 

MPI_FILE_CLOSE(FH, IERR) 

INTEGER FH, IERR 

 

• Routine is collective across the communicator 

- must be called by all processes in that communicator 
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Reading Data 
MPI_File_read_all(MPI_File fh, void *buf, int count, 

                  MPI_Datatype datatype, MPI_Status *status) 

 

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERR) 

  INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERR 

 

• Reads count objects of type datatype from the file on each process 

- this is collective across the communicator associated with fh 

- similar in operation to C fread or Fortran read 
 

• No offsets into the file are specified in the read 

- but processes do not all read the same data! 

- actual positions of read depends on the process’s own file view 

 

• Similar syntax for write 
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Setting the File View 
int MPI_File_set_view(MPI_File fh, MPI_Offset disp, 

                      MPI_Datatype etype, MPI_Datatype filetype, 

                      char *datarep, MPI_Info info); 

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO,IERR) 

INTEGER FH, ETYPE, FILETYPE, INFO, IERR 

CHARACTER*(*) DATAREP 

INTEGER(KIND=MPI_OFFSET_KIND) DISP 

 

• disp specifies the starting point in the file in bytes 

• etype specifies the elementary datatype which is the building block of the file 

• filetype specifies which subsections of the global file each process accesses 

• datarep specifies the format of the data in the file 

• info contains hints and system-specific information – see later 
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File Views 
• Once set, the process only sees the data in the view 

- data starts at different positions in the file depending on the displacement and/or 

leading gaps in fixed datatype 

- can then do linear reads – holes in datatype are skipped over 
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Filetypes Should Tile the File 
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Data Representation 

• datarep is a string that can be 

- “native” 

- “internal” 

- “external32” 

• Fastest is “native” 

- raw bytes are written to file exactly as in memory 

• Most portable is “external32” 

- should be readable by MPI-IO on any platform 

• Middle ground is “internal” 

- portability depends on the implementation 

• I would recommend “native” 

- convert file format by hand as and when necessary 
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Choice of Parameters (1) 
• Many different combinations are possible 

- choices of displacements, filetypes, etypes, datatypes, ... 
 

• Simplest approach is to set disp = 0 everywhere 

- then specify offsets into files using fixed datatypes when setting view 

• non-zero disp could be useful for skipping global header (eg metadata) 

- disp must be of the correct type in Fortran (NOT a default integer) 

- CANNOT specify ‘0’ for the displacement: need to use a variable 

   

      INTEGER(KIND=MPI_OFFSET_KIND) DISP = 0 

  CALL MPI_FILE_SET_VIEW(FH, DISP, ...) 
 

• I would recommend setting the view with fixed datatypes 

- and zero displacements 
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Choice of Parameters (2) 
• Can also use floating datatypes in the view 

- each process then specifies a different, non-zero value of disp 

• Problems 

- disp is specified in bytes so need to know the size of the etype 

- files are linear 1D arrays 

• need to do a calculation for displacement of element of 2D array 

• something like i*NY + j  (in C) or  j*NX + i (in Fortran) 

• then multiply by the number of bytes in a float or REAL 

• Using vector types + displacements is one of the exercises 

• etype normally something like MPI_REAL or MPI_FLOAT 

- datatype in read/write calls is usually the same as the etype 

- however, can play some useful tricks (see extra exercises re halos) 
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Collective IO 
• For read and write, “_all” means operation is collective 

- all processes attached to the file are taking part 

• Other IO routines exist which are individual (delete “_all”) 

- functionality is the same but performance will be slower 

- collective routines can aggregate reads/writes for better performance 
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INFO Objects and Performance 
• Used to pass optimisation hints to MPI-IO 

- implementations can define any number of allowed values 

- these are portable in as much as they can be ignored! 

- can use the default value info = MPI_INFO_NULL 

 

• Info objects can be created, set and freed (see manual for details) 

- MPI_Info_create 

- MPI_Info_set 

- MPI_Info_free 

• Using appropriate values may be key to performance 

- e.g. setting buffer sizes, blocking factors, number of IO nodes, ... 

- but is dependent on the system and the MPI implementation 

- need to consult the MPI manual for your machine 

- on ARCHER, easier to tune Lustre file system than use MPI-IO hints 
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Summary 

• MPI-IO calls deceptively simple 

 

• User must define appropriate filetypes so file view is 

correct on each process 

- this is the difficult part! 

 

• Use collective calls whenever you can 

- enables IO library to merge reads and writes 

- enables a smaller number of larger IO operations from/to disk 
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