
Advanced Parallel 

Programming 
Miscellaneous MPI-IO topics 



MPI-IO Errors 

• Unlike the rest of MPI, MPI-IO errors are not fatal 

- probably don’t want your program to crash if a file open fails 

- always need to check the error code! 

• Many different error codes can be reported 

- I would suggest simply quitting if ierr != MPI_SUCCESS 

 

• Can change this behaviour for file operations 

- same functionality as MPI_Errhandler_create etc. 

- called MPI_File_create_errhandler, ... 

- error handlers are attached to file handles rather than 

communicators 

- can set handler to be MPI_ERRORS_ARE_FATAL 

2 



Size of File on Disk 

• Useful to check length of output file 
- ls –l <filename> 

- check that size (in bytes) is what you expect 

 

• Can be confusing if file already exists 

- length will be increased if new file is longer than existing file 

- but may not be decreased if new file is shorter! 

 

• Delete old files before running your test programs 
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Datatype for MPI_File_read / write 
• Usually pass the basic type of the array being processed 

- eg MPI_FLOAT, MPI_REAL 

• Can pass derived types 

- useful for receiving the core of an array when local arrays have halos 
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MPI_File_read_all(fh, &x[1][1], 1, vector3x2, ...); 

MPI_FILE_READ_ALL(fh, x(2,2)  , 1, vector3x2, ...) 

– or could use a 3x2 subarray and pass &x[0][0] or  x(1,1) 



General Decompositions 

• We have just considered block decompositions 

- where local array size is an exact multiple of global array size 

• If the sizes don’t match 

- define different sized subarrays on each process 

- eg processes at the edge of the grid have smaller subsections 
 

• This does not generalize to block-cyclic decompositions 

- how do we specify discontinuous subarrays? 
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Distributed Arrays 
int MPI_Type_create_darray(int size, int rank, 

  int ndims, int array_of_gsizes[], 

  int array_of_distribs[], int array_of_dargs[], 

  int array_of_psizes[], int order, 

  MPI_Datatype oldtype, MPI_Datatype *newtype); 

 

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS 

  ARRAY_OF_GSIZES, ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, 

  ARRAY_OF_PSIZES, ORDER, OLDTYPE, NEWTYPE, IERR) 

 

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), 

  ARRAY_OF_DISTRIBS(*), ARRAY_OF_DARGS(*), 

  ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERR  
 

• See the man page for full details! 

- uses HPF conventions for block-cyclic distributions 
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Unstructured Data 

• Imagine a particle simulation 

- each particle is a compound object with a type and position (x,y,z) 

• eg a C struct or Fortran type 

- each particle has unique global identifier 1, 2, 3, ..., N-1, N 
 

• Particles move around 

- at the end of a simulation, each process will have: 

• a different number of particles 

• with a random mixture of global identifiers 
 

• Two choices 

- write to file in the order they appear in the processes 

- write to file with position based on global identifier 
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Approach 

• Define a derived type to match the particle object 

- eg MPI_PARTICLE 

- use this as the etype 

• Writing in process order 

- need to know where to start in the file 

- calculate the sum of the number of particles on previous ranks 

• using MPI_Scan 

 

• Writing in global order 

- call MPI_Type_indexed (or create_indexed_block) 

- use this as the filetype 

- write multiple instances of MPI_PARTICLE 
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Unstructured Meshes 

• Similar to global ordering of particles 

- each element has both a local and global identifier 

- want the file to be ordered by the global id 

 

• Define an MPI_ELEMENT 

- use this as the etype 

- create an indexed filetype based on global id  
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Blocking IO 

  define big arrays: old and new 

  loop many times 

    ! do a computationally expensive operation 

    new = expensive_function(old) 

    old = new 

    every 10 iterations: 

      save_to_disk(old) 

   end loop 
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• This code spends a lot of time waiting while saving to disk 



Non-blocking IO 

  define big arrays: old and new 

  loop many times 

    ! do a computationally expensive operation 

    new = expensive_function(old) 

    if (saving to disk): 

      finish: isave_to_disk(old) 

    old = new 

    every 10 iterations: 

      start: isave_to_disk(old) 

   end loop 
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• This code overlaps computation and IO 



Non-blocking IO in MPI-IO 

• Two forms 

• General non-blocking 
- MPI_File_iwrite(fh, buf, count, datatype, request)  

- finish by waiting on request 

- but no collective version 

 

• Split collective 
- MPI_File_write_all_begin(fh, buf, count, datatype) 

- MPI_File_write_all_end(fh, buf, status) 

 

- only a single outstanding IO operation at any one time 

- allows for collective version 
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Serial IO 

• How can I read MPI-IO files in a serial program? 

• Using native format 

- data is raw bytes 

- use fread in C or direct access unformatted IO in Fortran 

- see ioread.c and ioread.f90 for examples 

- Fortran approach is quite old-fashioned (direct access IO) 

• new access=“stream” functionality makes this a bit simpler 

 

• Other MPI-IO formats will require more work! 
 

• Note that you can do single process IO in MPI-IO 

- pass MPI_COMM_SELF to MPI_File_open 
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Other MPI-IO read / write calls 
• I have advised 

- define a datatype to represents mapping from local to global data 

- use this in MPI_File_set_view() 

- then do linear reads / writes; gaps are automatically skipped 

 

• Alternative approach 

- let everyone see the whole file (i.e. do not set a view) 

- manually seek to correct location using, e.g., MPI_File_write_at() 

- displacement is in units of the extent of the etype 

 

• Disadvantages 

- a very low-level, manual approach less amenable to IO optimisation 

- danger that each request is handled individually with no aggregation 

- can use MPI_File_write_at_all() but might still be slow 
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Performance 
• Recall schematic overview of parallel file system Lustre 

15 



Application-side parallel IO 
• Implementing MPI-IO has achieved 

- all data going to a single file 

- minimal stress on Meta Data Server (MDS) – a serial bottleneck 

- potential for many processes to write simultaneously 
 

• But … 

- performance requires multiple parallel writes to disk 

- in Lustre, requires multiple Object Storage Servers (OSS) writing to 

multiple Object Storage Targets (OST) 

- an OSS is like an IO server, an OST is like a physical disk 
 

• User has control over assignment of files to OSTs 

- but default is only a few OSTs 

- MPI-IO performance not much better than naïve master IO 
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Parallel vs serial IO, default Lustre (4 stripes) 
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Cellular Automaton Model 

 
 

 

 

 

 

 

 

• Fortran coarray library for 3D cellular automata microstructure 
simulation, Anton Shterenlikht, proceedings of 7th International 
Conference on PGAS Programming Models, 3-4 October 2013, 
Edinburgh, UK. 



Benchmark 
• Distributed regular 3D dataset across 3D process grid 

- local data has halos of depth 1; set up for weak scaling 

- implemented in Fortran and MPI-IO 
 

! Define datatype describing global location of local data 

call MPI_Type_create_subarray(ndim, arraygsize, arraysubsize, arraystart, 

       MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, filetype, ierr) 

 

! Define datatype describing where local data sits in local array 

call MPI_Type_create_subarray(ndim, arraysize, arraysubsize, arraystart, 

       MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, mpi_subarray, ierr) 

 

! After opening file fh, define what portions of file this process owns 

call MPI_File_set_view(fh, disp, MPI_DOUBLE_PRECISION, filetype, 

                       'native', MPI_INFO_NULL, ierr) 

! Write data collectively 

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr) 



Lustre Striping 
• Can split a file across multiple OSTs 

- each block is called a “stripe”; default striping is across 4 OSTs 
 

• lfs setstripe -c 8 <directory> 

- stripes across 8 OSTs for all files in the directory 

- has substantial benefits for performance 

- stripe count of “-1” means use all OSTs 
   

• Test case 

- 128 x 128 x 128 array of doubles on each process in 3D grid 

- scaled up to 4096 processes = 64 GiB 

- identical IO approach as used in exercise 

• generalised to 3D 

• local halos automatically stripped off with derived type in MPI-IO write call 
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Results on ARCHER 
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Performance Summary 
• Serial IO never gets more than about 500 MiB/s 

- peak for a single OST 

• With default striping, never exceed 2 GiB/s 

- 4 stripes = 4 OSTs = 4 x 500 MiB/s 

• With full striping, IO bandwith increases with process count 

- can achieve in excess of 10 GiB/s 

 

• Collective IO is essential 

- replacing MPI_File_Write_all() 

by MPI_File_write() disastrous! 

- identical functionality but each IO 

request now processed separately 

with file locking 
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Processes Bandwidth 

1 49.5 MiB/s 

8 5.9 MiB/s 

64 2.4 MiB/s 



Documentation 
• MPI web pages 

• Short ARCHER report: 
- http://www.archer.ac.uk/documentation/white-papers/ 

• Another tutorial 
- https://www.lrde.epita.fr/~ricou/mpi-io.ppt  

• Advanced MPI book 

- “Using Advanced MPI: Modern Features 

of the Message-Passing Interface” 
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