
Advanced Parallel

Programming
Miscellaneous MPI-IO topics

MPI-IO Errors

• Unlike the rest of MPI, MPI-IO errors are not fatal

- probably don’t want your program to crash if a file open fails

- always need to check the error code!

• Many different error codes can be reported

- I would suggest simply quitting if ierr != MPI_SUCCESS

• Can change this behaviour for file operations

- same functionality as MPI_Errhandler_create etc.

- called MPI_File_create_errhandler, ...

- error handlers are attached to file handles rather than

communicators

- can set handler to be MPI_ERRORS_ARE_FATAL

2

Size of File on Disk

• Useful to check length of output file
- ls –l <filename>

- check that size (in bytes) is what you expect

• Can be confusing if file already exists

- length will be increased if new file is longer than existing file

- but may not be decreased if new file is shorter!

• Delete old files before running your test programs

3

Datatype for MPI_File_read / write
• Usually pass the basic type of the array being processed

- eg MPI_FLOAT, MPI_REAL

• Can pass derived types

- useful for receiving the core of an array when local arrays have halos

4

MPI_File_read_all(fh, &x[1][1], 1, vector3x2, ...);

MPI_FILE_READ_ALL(fh, x(2,2) , 1, vector3x2, ...)

– or could use a 3x2 subarray and pass &x[0][0] or x(1,1)

General Decompositions

• We have just considered block decompositions

- where local array size is an exact multiple of global array size

• If the sizes don’t match

- define different sized subarrays on each process

- eg processes at the edge of the grid have smaller subsections

• This does not generalize to block-cyclic decompositions

- how do we specify discontinuous subarrays?

5

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

3

Distributed Arrays
int MPI_Type_create_darray(int size, int rank,

 int ndims, int array_of_gsizes[],

 int array_of_distribs[], int array_of_dargs[],

 int array_of_psizes[], int order,

 MPI_Datatype oldtype, MPI_Datatype *newtype);

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS

 ARRAY_OF_GSIZES, ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS,

 ARRAY_OF_PSIZES, ORDER, OLDTYPE, NEWTYPE, IERR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*),

 ARRAY_OF_DISTRIBS(*), ARRAY_OF_DARGS(*),

 ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERR

• See the man page for full details!

- uses HPF conventions for block-cyclic distributions

6

Unstructured Data

• Imagine a particle simulation

- each particle is a compound object with a type and position (x,y,z)

• eg a C struct or Fortran type

- each particle has unique global identifier 1, 2, 3, ..., N-1, N

• Particles move around

- at the end of a simulation, each process will have:

• a different number of particles

• with a random mixture of global identifiers

• Two choices

- write to file in the order they appear in the processes

- write to file with position based on global identifier

7

Approach

• Define a derived type to match the particle object

- eg MPI_PARTICLE

- use this as the etype

• Writing in process order

- need to know where to start in the file

- calculate the sum of the number of particles on previous ranks

• using MPI_Scan

• Writing in global order

- call MPI_Type_indexed (or create_indexed_block)

- use this as the filetype

- write multiple instances of MPI_PARTICLE

 8

Unstructured Meshes

• Similar to global ordering of particles

- each element has both a local and global identifier

- want the file to be ordered by the global id

• Define an MPI_ELEMENT

- use this as the etype

- create an indexed filetype based on global id

9

Blocking IO

 define big arrays: old and new

 loop many times

 ! do a computationally expensive operation

 new = expensive_function(old)

 old = new

 every 10 iterations:

 save_to_disk(old)

 end loop

10

• This code spends a lot of time waiting while saving to disk

Non-blocking IO

 define big arrays: old and new

 loop many times

 ! do a computationally expensive operation

 new = expensive_function(old)

 if (saving to disk):

 finish: isave_to_disk(old)

 old = new

 every 10 iterations:

 start: isave_to_disk(old)

 end loop

11

• This code overlaps computation and IO

Non-blocking IO in MPI-IO

• Two forms

• General non-blocking
- MPI_File_iwrite(fh, buf, count, datatype, request)

- finish by waiting on request

- but no collective version

• Split collective
- MPI_File_write_all_begin(fh, buf, count, datatype)

- MPI_File_write_all_end(fh, buf, status)

- only a single outstanding IO operation at any one time

- allows for collective version

12

Serial IO

• How can I read MPI-IO files in a serial program?

• Using native format

- data is raw bytes

- use fread in C or direct access unformatted IO in Fortran

- see ioread.c and ioread.f90 for examples

- Fortran approach is quite old-fashioned (direct access IO)

• new access=“stream” functionality makes this a bit simpler

• Other MPI-IO formats will require more work!

• Note that you can do single process IO in MPI-IO

- pass MPI_COMM_SELF to MPI_File_open

13

Other MPI-IO read / write calls
• I have advised

- define a datatype to represents mapping from local to global data

- use this in MPI_File_set_view()

- then do linear reads / writes; gaps are automatically skipped

• Alternative approach

- let everyone see the whole file (i.e. do not set a view)

- manually seek to correct location using, e.g., MPI_File_write_at()

- displacement is in units of the extent of the etype

• Disadvantages

- a very low-level, manual approach less amenable to IO optimisation

- danger that each request is handled individually with no aggregation

- can use MPI_File_write_at_all() but might still be slow

14

Performance
• Recall schematic overview of parallel file system Lustre

15

Application-side parallel IO
• Implementing MPI-IO has achieved

- all data going to a single file

- minimal stress on Meta Data Server (MDS) – a serial bottleneck

- potential for many processes to write simultaneously

• But …

- performance requires multiple parallel writes to disk

- in Lustre, requires multiple Object Storage Servers (OSS) writing to

multiple Object Storage Targets (OST)

- an OSS is like an IO server, an OST is like a physical disk

• User has control over assignment of files to OSTs

- but default is only a few OSTs

- MPI-IO performance not much better than naïve master IO

16

Parallel vs serial IO, default Lustre (4 stripes)

17

Cellular Automaton Model

• Fortran coarray library for 3D cellular automata microstructure
simulation, Anton Shterenlikht, proceedings of 7th International
Conference on PGAS Programming Models, 3-4 October 2013,
Edinburgh, UK.

Benchmark
• Distributed regular 3D dataset across 3D process grid

- local data has halos of depth 1; set up for weak scaling

- implemented in Fortran and MPI-IO

! Define datatype describing global location of local data

call MPI_Type_create_subarray(ndim, arraygsize, arraysubsize, arraystart,

 MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, filetype, ierr)

! Define datatype describing where local data sits in local array

call MPI_Type_create_subarray(ndim, arraysize, arraysubsize, arraystart,

 MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, mpi_subarray, ierr)

! After opening file fh, define what portions of file this process owns

call MPI_File_set_view(fh, disp, MPI_DOUBLE_PRECISION, filetype,

 'native', MPI_INFO_NULL, ierr)

! Write data collectively

call MPI_File_write_all(fh, iodata, 1, mpi_subarray, status, ierr)

Lustre Striping
• Can split a file across multiple OSTs

- each block is called a “stripe”; default striping is across 4 OSTs

• lfs setstripe -c 8 <directory>

- stripes across 8 OSTs for all files in the directory

- has substantial benefits for performance

- stripe count of “-1” means use all OSTs

• Test case

- 128 x 128 x 128 array of doubles on each process in 3D grid

- scaled up to 4096 processes = 64 GiB

- identical IO approach as used in exercise

• generalised to 3D

• local halos automatically stripped off with derived type in MPI-IO write call

20

Results on ARCHER

21

Performance Summary
• Serial IO never gets more than about 500 MiB/s

- peak for a single OST

• With default striping, never exceed 2 GiB/s

- 4 stripes = 4 OSTs = 4 x 500 MiB/s

• With full striping, IO bandwith increases with process count

- can achieve in excess of 10 GiB/s

• Collective IO is essential

- replacing MPI_File_Write_all()

by MPI_File_write() disastrous!

- identical functionality but each IO

request now processed separately

with file locking

22

Processes Bandwidth

1 49.5 MiB/s

8 5.9 MiB/s

64 2.4 MiB/s

Documentation
• MPI web pages

• Short ARCHER report:
- http://www.archer.ac.uk/documentation/white-papers/

• Another tutorial
- https://www.lrde.epita.fr/~ricou/mpi-io.ppt

• Advanced MPI book

- “Using Advanced MPI: Modern Features

of the Message-Passing Interface”

23

