
Message Passing

Programming
Modes, Tags and Communicators

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Overview

• Lecture will cover

- explanation of MPI modes (Ssend, Bsend and Send)

- meaning and use of message tags

- rationale for MPI communicators

• These are all commonly misunderstood

- essential for all programmers to understand modes

- often useful to use tags

- certain cases benefit from exploiting different communicators

3

Modes

• MPI_Ssend (Synchronous Send)

• guaranteed to be synchronous

• routine will not return until message has been delivered

• MPI_Bsend (Buffered Send)

• guaranteed to be asynchronous

• routine returns before the message is delivered

• system copies data into a buffer and sends it later on

• MPI_Send (standard Send)

• may be implemented as synchronous or asynchronous send

• this causes a lot of confusion (see later)

4

Process A Process B

Ssend(x,B)

Recv(y,A)

Running other

non-MPI code

Wait in Ssend

x y
Data Transfer

Recv returns Ssend returns

x can be

overwritten by A
y can now be

read by B

MPI_Ssend

5

Process A Process B

Bsend(x,B)

Recv(y,A)

Running other

non-MPI code

y

Bsend returns
x can be

overwritten by A

y can now be

read by B

x

Recv returns

MPI_Bsend

6

Notes

• Recv is always synchronous

• if process B issued Recv before the Bsend from process A, then B

would wait in the Recv until Bsend was issued

• Where does the buffer space come from?

• for Bsend, the user provides a single large block of memory

• make this available to MPI using MPI_Buffer_attach

• If A issues another Bsend before the Recv

• system tries to store message in free space in the buffer

• if there is not enough space then Bsend will FAIL!

7

Send

• Problems

- Ssend runs the risk of deadlock

- Bsend less likely to deadlock, and your code may run faster, but

• the user must supply the buffer space

• the routine will FAIL if this buffering is exhausted

• MPI_Send tries to solve these problems

- buffer space is provided by the system

- Send will normally be asynchronous (like Bsend)

- if buffer is full, Send becomes synchronous (like Ssend)

• MPI_Send routine is unlikely to fail

- but could cause your program to deadlock if buffering runs out

8

• This code is NOT guaranteed to work

- will deadlock if Send is synchronous

- is guaranteed to deadlock if you use Ssend!

Process A Process B

Send(x,B) Send(y,A)

Recv(y,A) Recv(x,B)

MPI_Send

9

Solutions

• To avoid deadlock

- either match sends and receives explicitly

- e.g. for ping-pong

• process A sends then receives

• process B receives then sends

• For a more general solution use non-blocking

communications (see later)

• For this course you should program with Ssend

- more likely to pick up bugs such as deadlock than Send

10

Checking for Messages

• MPI allows you to check if any messages have arrived
- you can “probe” for matching messages

- same syntax as receive except no receive buffer specified

• e.g. in C:
 int MPI_Probe(int source, int tag,

 MPI_Comm comm, MPI_Status *status)

• Status is set as if the receive took place
- e.g. you can find out the size of the message and allocate space prior to receive

• Be careful with wildcards
- you can use, e.g., MPI_ANY_SOURCE in call to probe

- but must use specific source in receive to guarantee matching same message

- e.g. MPI_Recv(buff, count, datatype, status.MPI_SOURCE, ...)

11

Tags
• Every message can have a tag

- this is a non-negative integer value

- maximum value can be queried using MPI_TAG_UB attribute

- MPI guarantees to support tags of at least 32767

- not everyone uses them; many MPI programs set all tags to zero

• Tags can be useful in some situations

- can choose to receive messages only of a given tag

• Most commonly used with MPI_ANY_TAG

- receives the most recent message regardless of the tag

- user then finds out the actual value by looking at the status

12

Communicators

• All MPI communications take place within a communicator

- a communicator is fundamentally a group of processes

- there is a pre-defined communicator: MPI_COMM_WORLD which

contains ALL the processes

• also MPI_COMM_SELF which contains only one process

• A message can ONLY be received within the same

communicator from which it was sent

- unlike tags, it is not possible to wildcard on comm

13

Uses of Communicators (i)

• Can split MPI_COMM_WORLD into pieces

- each process has a new rank within each sub-communicator

- guarantees messages from the different pieces do not interact

• can attempt to do this using tags but there are no guarantees

14

rank=6
rank=2

rank=1 rank=3

rank=0 rank=4

rank=5

size=7

rank=2

MPI_COMM_WORLD

rank=0
rank=1 rank=3

size=4
size=3

comm1
comm2

rank=2 rank=0

rank=1

MPI_Comm_split()

Uses of Communicators (ii)

• Can make a copy of MPI_COMM_WORLD

- e.g. call the MPI_Comm_dup routine

- containing all the same processes but in a new communicator

• Enables processes to communicate with each other safely

within a piece of code

- guaranteed that messages cannot be received by other code

- this is essential for people writing parallel libraries (e.g. a Fast

Fourier Transform) to stop library messages becoming mixed up

with user messages

• user cannot intercept the the library messages if the library keeps the

identity of the new communicator a secret

• not safe to simply try and reserve tag values due to wildcarding

15

Summary (i)

• Question: Why bother with all these send modes?

• Answer
- it is a little complicated, but you should make sure you understand

- Ssend and Bsend are clear

• map directly onto synchronous and asynchronous sends

- Send can be either synchronous or asynchronous

• MPI is trying to be helpful here, giving you the benefits of Bsend if there is
sufficient system memory available, but not failing completely if buffer
space runs out

• in practice this leads to endless confusion!

• The amount of system buffer space is variable
- programs that run on one machine may deadlock on another

- you should NEVER assume that Send is asynchronous!

16

Summary (ii)

• Question: What are the tags for?

• Answer

- if you don’t need them don’t use them!

• perfectly acceptable to set all tags to zero

- can be useful for debugging

• e.g. always tag messages with the rank of the sender

17

Summary (iii)

• Question: Can I just use MPI_COMM_WORLD?

• Answer
- yes: many people never need to create new communicators in their

MPI programs

- however, it is probably bad practice to specify MPI_COMM_WORLD
explicitly in your routines

• using a variable will allow for greater flexibility later on, e.g.:

MPI_Comm comm; /* or INTEGER for Fortran */

comm = MPI_COMM_WORLD;

...

MPI_Comm_rank(comm, &rank);

MPI_Comm_size(comm, &size);

....

18

