
Performance metrics 
How is my parallel code performing and scaling? 
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Performance metrics 

• A typical program has two categories of components 
- Inherently sequential sections: can’t be run in parallel 

- Potentially parallel sections 

 

• Speed up 
- typically  

 

• Parallel efficiency 
- typically  

 

• Serial efficiency 
- typically  

 

 
where N is the size of the problem and P the number of processors 
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S N,P( )
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T N,1( )
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E N( ) =
Tbest N( )
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S N,P( ) < P

E N,P( ) <1

E N( ) <=1



Scaling 

• Scaling is how the performance of a parallel application 

changes as the number of processors is increased 

 

• There are two different types of scaling: 

- Strong Scaling – total problem size stays the same as the number 

of processors increases 

- Weak Scaling – the problem size increases at the same rate as the 

number of processors, keeping the amount of work per processor 

the same 

 

• Strong scaling is generally more useful and more difficult 

to achieve than weak scaling 
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Strong scaling 
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Weak scaling 

6 

0

2

4

6

8

10

12

14

16

18

20

1 n

Actual

Ideal

R
u
n
ti
m

e
 (

s
) 

No. of processors 



The serial section of code 

“The performance improvement to be gained by parallelisation is limited 

by the proportion of the code which is serial” 

Gene Amdahl, 1967 
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Amdahl’s law 

• A fraction,     , is completely serial 

 

• Parallel runtime 

- Assuming parallel part is 100% efficient 

 

• Parallel speedup 

 

• We are fundamentally limited by the serial fraction 

- For          , S = P as expected (i.e. efficiency = 100%) 

- Otherwise, speedup limited by           for any P 

• For                ; 1/0.1 = 10 therefore 10 times maximum speed up 

• For                ; S(N, 16) = 6.4, S(N, 1024) = 9.9 
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T N,P( ) =a T N,1( ) +
1-a( ) T N,1( )

P

S N,P( ) =
T N,1( )
T N,P( )

=
P

aP+ 1-a( )

a

a = 0

a = 0.1
a = 0.1

1/a



Gustafson’s Law 

• We need larger problems for larger numbers of CPUs 

 

 

 

 

 

 

 

 

• Whilst we are still limited by the serial fraction, it becomes 
less important 
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Utilising Large Parallel Machines 

• Assume parallel part is O(N), serial part is O(1) 

- time 

 

 

 

 

- speedup 

 

• Scale problem size with CPUs, i.e. set          (weak scaling) 

- speedup 

 

- efficiency 
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Gustafson’s Law 

• If you can increase the amount of work done by each 

process/task then the serial component will not dominate 

- Increase the problem size to maintain scaling 

- This can be in terms of adding extra complexity or increasing the 

overall problem size. 

 

- Due to the scaling of N, effectively the serial fraction becomes  

 

• For instance, 
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S N *P,P( ) = P-a P-1( )

a = 0.1

S 16 N,16( ) =14.5

S 1024 N,1024( ) = 921.7

a

P



Analogy: Flying London to New York 
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Buckingham Palace to Empire State 

• By Jumbo Jet 
- distance: 5600 km; speed: 700 kph 

- time: 8 hours ? 

• No! 
- 1 hour by tube to Heathrow + 1 hour for check in etc. 

- 1 hour immigration + 1 hour taxi downtown 

- fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours 

• Triple the flight speed with Concorde to 2100 kph 
- total journey time = 4 hours +  2 hours 40 mins  = 6.7 hours 

- speedup of 1.8 not 3.0 

• Amdahl’s law! 
- a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours) 
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Flying London to Sydney 
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Buckingham Palace to Sydney Opera 

• By Jumbo Jet 
- distance: 16800 km; speed: 700 kph; flight time; 24 hours 

- serial overhead stays the same: total time: 4 + 24 = 28 hours 

 

• Triple the flight speed 
- total time = 4 hours + 8 hours = 12 hours 

- speedup = 2.3 (as opposed to 1.8 for New York) 

 

• Gustafson’s law! 
- bigger problems scale better 

- increase both distance (i.e. N) and max speed (i.e. P) by three 

- maintain same balance: 4 “serial” + 8 “parallel” 
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Plotting 

• Think carefully whenever you plot data 

- what am I trying to show with the graph? 

- is it easy to interpret? 

- can it be interpreted quantitatively? 

 

• Default plotting options are rarely what you want 

- default colours can be hard to read (e.g. yellow on white) 

- default axis limits may not be sensible 

- ... 

• Test data 

- MPI version of traffic model on multiple nodes of ARCHER 
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Hard to interpret small N data here 
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log/log can make trends in data too similar 
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Normalised data easier to compare 
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Efficiency plots can be useful too 
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log/linear useful if many points at small P 
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Don’t just accept the default options 

• In this bar chart the x-axis doesn’t have a meaningful 

scale 
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Summary 

• A variety of considerations when parallelising code 

- serial sections 

- communications overheads  

- load balance 

- ... 

 

• Scaling is important 

- the better a code scales the larger machine it can take advantage of 

 

• Metrics exist to give you an indication of how well your code 

performs and scales 

- important to plot them appropriately 
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