
Performance metrics
How is my parallel code performing and scaling?

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Performance metrics

• A typical program has two categories of components
- Inherently sequential sections: can’t be run in parallel

- Potentially parallel sections

• Speed up
- typically

• Parallel efficiency
- typically

• Serial efficiency
- typically

where N is the size of the problem and P the number of processors

3

S N,P() =
T N,1()
T N,P()

E N,P() =
S N,P()
P

=
T N,1()
P T N,P()

E N() =
Tbest N()
T N,1()

S N,P() < P

E N,P() <1

E N() <=1

Scaling

• Scaling is how the performance of a parallel application

changes as the number of processors is increased

• There are two different types of scaling:

- Strong Scaling – total problem size stays the same as the number

of processors increases

- Weak Scaling – the problem size increases at the same rate as the

number of processors, keeping the amount of work per processor

the same

• Strong scaling is generally more useful and more difficult

to achieve than weak scaling

4

Strong scaling

5

0

50

100

150

200

250

300

0 50 100 150 200 250 300

S
p

e
e

d
-u

p

No of processors

Speed-up vs No of processors

linear

actual

Weak scaling

6

0

2

4

6

8

10

12

14

16

18

20

1 n

Actual

Ideal

R
u
n
ti
m

e
 (

s
)

No. of processors

The serial section of code

“The performance improvement to be gained by parallelisation is limited

by the proportion of the code which is serial”

Gene Amdahl, 1967

7

Amdahl’s law

• A fraction, , is completely serial

• Parallel runtime

- Assuming parallel part is 100% efficient

• Parallel speedup

• We are fundamentally limited by the serial fraction

- For , S = P as expected (i.e. efficiency = 100%)

- Otherwise, speedup limited by for any P

• For ; 1/0.1 = 10 therefore 10 times maximum speed up

• For ; S(N, 16) = 6.4, S(N, 1024) = 9.9

8

T N,P() =a T N,1() +
1-a() T N,1()

P

S N,P() =
T N,1()
T N,P()

=
P

aP+ 1-a()

a

a = 0

a = 0.1
a = 0.1

1/a

Gustafson’s Law

• We need larger problems for larger numbers of CPUs

• Whilst we are still limited by the serial fraction, it becomes
less important

9

Utilising Large Parallel Machines

• Assume parallel part is O(N), serial part is O(1)

- time

- speedup

• Scale problem size with CPUs, i.e. set (weak scaling)

- speedup

- efficiency

10

E P,P() =
a

P
+ 1-a()

S P,P() =a + 1-a() P

S N,P() =
T N,1()
T N,P()

=
a + 1-a() N

a + 1-a()
N

P

P

NT
T

PNTPNTPNT
parallelserial

1,11
1,1

,,,

N = P

Gustafson’s Law

• If you can increase the amount of work done by each

process/task then the serial component will not dominate

- Increase the problem size to maintain scaling

- This can be in terms of adding extra complexity or increasing the

overall problem size.

- Due to the scaling of N, effectively the serial fraction becomes

• For instance,

11

S N *P,P() = P-a P-1()

a = 0.1

S 16 N,16() =14.5

S 1024 N,1024() = 921.7

a

P

Analogy: Flying London to New York

12

Buckingham Palace to Empire State

• By Jumbo Jet
- distance: 5600 km; speed: 700 kph

- time: 8 hours ?

• No!
- 1 hour by tube to Heathrow + 1 hour for check in etc.

- 1 hour immigration + 1 hour taxi downtown

- fixed overhead of 4 hours; total journey time: 4 + 8 = 12 hours

• Triple the flight speed with Concorde to 2100 kph
- total journey time = 4 hours + 2 hours 40 mins = 6.7 hours

- speedup of 1.8 not 3.0

• Amdahl’s law!
- a = 4/12 = 0.33; max speedup = 3 (i.e. 4 hours)

13

Flying London to Sydney

14

Buckingham Palace to Sydney Opera

• By Jumbo Jet
- distance: 16800 km; speed: 700 kph; flight time; 24 hours

- serial overhead stays the same: total time: 4 + 24 = 28 hours

• Triple the flight speed
- total time = 4 hours + 8 hours = 12 hours

- speedup = 2.3 (as opposed to 1.8 for New York)

• Gustafson’s law!
- bigger problems scale better

- increase both distance (i.e. N) and max speed (i.e. P) by three

- maintain same balance: 4 “serial” + 8 “parallel”

 15

Plotting

• Think carefully whenever you plot data

- what am I trying to show with the graph?

- is it easy to interpret?

- can it be interpreted quantitatively?

• Default plotting options are rarely what you want

- default colours can be hard to read (e.g. yellow on white)

- default axis limits may not be sensible

- ...

• Test data

- MPI version of traffic model on multiple nodes of ARCHER

16

Hard to interpret small N data here

17

0

100

200

300

400

500

600

700

0 50 100 150 200 250

T
im

e
 (

s
e
c
o

n
d

s
)

Processes

Large N

Small N

log/log can make trends in data too similar

18

1

10

100

1000

16 32 64 128 256 512

T
im

e
 (

s
e
c
o

n
d

s
)

Processes

Large N

Small N

Normalised data easier to compare

19

0

1

2

3

4

5

6

0 50 100 150 200 250

S
p

e
e
d

u
p

Processes

Large N

Small N

• use single-node (24-core) performance as baseline here

Efficiency plots can be useful too

20

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250

P
a
ra

ll
e
l

E
ff

ic
ie

n
c
y

Processes

Large N

Small N

log/linear useful if many points at small P

21

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 128 256

P
a
ra

ll
e
l

E
ff

ic
ie

n
c

y

Processes

Large N

Small N

Don’t just accept the default options

• In this bar chart the x-axis doesn’t have a meaningful

scale

22

0

1

2

3

4

5

6

1 2 3 4 8

S
p

e
e
d

u
p

Nodes

Summary

• A variety of considerations when parallelising code

- serial sections

- communications overheads

- load balance

- ...

• Scaling is important

- the better a code scales the larger machine it can take advantage of

• Metrics exist to give you an indication of how well your code

performs and scales

- important to plot them appropriately

23

