
Message-Passing

Programming
Cellular Automaton Exercise

Reusing this material

This work is licensed under a Creative Commons Attribution-

NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the

material under the following terms: You must give appropriate credit, provide a link to the

license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission

before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

n n+1 n-1 n n+1 n-1
current value new value new value

n n
current value

• Update rules depend on:

– state of cell

– state of nearest neighbours in both directions

Traffic simulation

3

State Table
• If Rt(i) = 0, then Rt+1(i) is given by:

• If Rt(i) = 1, then Rt+1(i) is given by:

4

Rt(i-1) = 0 Rt(i -1) = 1

 Rt(i+1) = 0 0 1

Rt(i+1) = 1 0 1

Rt(i-1) = 0 Rt(i -1) = 1

 Rt(i+1) = 0 0 0

Rt(i+1) = 1 1 1

Pseudo Code

 declare arrays old(i) and new(i), i = 0,1,...,N,N+1

 initialise old(i) for i = 1,2,...,N-1,N (eg randomly)

 loop over iterations

 set old(0) = old(N) and set old(N+1) = old(1)

 loop over i = 1,...,N

 if old(i) = 1

 if old(i+1) = 1 then new(i) = 1 else new(i) = 0

 if old(i) = 0

 if old(i-1) = 1 then new(i) = 1 else new(i) = 0

 end loop over i

 set old(i) = new(i) for i = 1,2,...,N-1,N

 end loop over iterations

5

Parallelisation Strategy (1)

6

Broadcast data

to 2 processes:

Split calculation

between 2 processes:

Process 1 Process 2

•Globally resynchronise all data after each move

• a replicated data strategy

•Every process stores the entire state of the calculation

• e.g. any process can compute total number of moves

Parallelisation Strategy (2)

7

Scatter data

between 2 processes:

distributed data strategy

•Internal cells can be updated independently.

•Must communicate with neighbouring processes to update edge cells.

•Sum local number of moves on each process to obtain total number of

moves at each iteration.

Split calculation

between 2 processes:
Process 1 Process 2

•Each process must know which part of roadway it is updating.

•Synchronise at completion of each iteration and obtain total

number of moves.

Parallelisation

• Load balance not an issue
- updates take equal computation regardless of state of road

- split the road into equal pieces of size N/P

• For each piece
- rule for cell i depends on cells i-1 and i+1

- the N/P - 2 interior cells can be updated independently in parallel

- however, the edge cells are updated by other processors

• similar to having separate rules for boundary conditions

• Communications required
- to get value of edge cells from other processors

- to produce a global sum of the number of cars that move

8

Message Passing Parallelisation

9

local moves = 2 local moves = 1

global moves = 3

2 processes,

add halos

copy data

to halos

update

interior cells

