Message-Passing Thought Exercise

Traffic Modelling

Reusing this material

> CC This work is licensed under a Creative Commons AttributionNonCommercial-ShareAlike 4.0 International License. http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en US

This means you are free to copy and redistribute the material and adapt and build on the material under the following terms: You must give appropriate credit, provide a link to the license and indicate if changes were made. If you adapt or build on the material you must distribute your work under the same license as the original.

Acknowledge EPCC as follows: "® EPCC, The University of Edinburgh, www.epcc.ed.ac.uk"

Note that this presentation contains images owned by others. Please seek their permission before reusing these images.

Traffic flow

- we want to predict traffic flow

Simple traffic model

- divide road into a series of cells
- either occupied or unoccupied
- perform a number of steps
- each step, cars move forward if space ahead is empty

could do this by moving
pawns on a chess board
epcc

Traffic behaviour

- model predicts a number of interesting features
- traffic lights

average
- congestion
- more complicated $\stackrel{1.0}{ }$ are used in practi申e

6

Traffic simulation

- Update rules depend on:
- state of cell
- state of nearest neighbours in both directions
current value
new value

new value

State Table

- If $R^{t}(i)=0$, then $R^{t+1}(i)$ is given by:

	$R^{t}(i-1)=0$	$R^{t}(i-1)=1$
$R^{t}(i+1)=0$	0	1
$R^{t}(i+1)=1$	$?$	$?$

- If $R^{t}(i)=1$, then $R^{t+1}(i)$ is given by:

	$R^{t}(i-1)=0$	$R^{t}(i-1)=1$
$R^{t}(i+1)=0$	$?$	$?$
$R^{t}(i+1)=1$	$?$	$?$

How fast can we run the model?

- measure speed in Car Operations Per second
- how many COPs?
- around 2 COPs
- but what abou hinee beople?
- can they

Parallel Traffic Modelling

Pseudo Code: traffic on a roundabout

```
declare arrays old(i) and new(i), i = 0,1,...,N,N+1
initialise old(i) for i = 1,2,...,N-1,N (eg randomly)
loop over iterations
set old(0) = old(N) and set old(N+1) = old(1)
loop over i = 1,...,N
    if old(i) = 1
    if old(i+1) = 1 then new(i) = 1 else new(i) = 0
    if old(i) = 0
    if old(i-1) = 1 then new(i) = 1 else new(i) = 0
    end loop over i
    set old(i) = new(i) for i = 1,2,...,N-1,N
end loop over iterations
```

