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Completion 

• The mode of a communication determines when its 

constituent operations complete. 

- i.e. synchronous / asynchronous 

 

• The form of an operation determines when the procedure 

implementing that operation will return 

- i.e. when control is returned to the user program 
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Blocking Operations 

• Relate to when the operation has completed. 

• Only return from the subroutine call when the operation 

has completed. 

• These are the routines you used thus far 
- MPI_Ssend 

- MPI_Recv 
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Non-Blocking Operations  

• Return straight away and allow the sub-program to 

continue to perform other work. At some later time the 

sub-program can test or wait for the completion of the 

non-blocking operation. 
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Non-Blocking Operations  

• All non-blocking operations should have matching wait 

operations. Some systems cannot free resources until 

wait has been called. 

• A non-blocking operation immediately followed by a 

matching wait is equivalent to a blocking operation. 

• Non-blocking operations are not the same as sequential 

subroutine calls as the operation continues after the call 

has returned. 
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Non-Blocking Communications 

• Separate communication into three phases: 

• Initiate non-blocking communication. 

• Do some work (perhaps involving other communications?) 

• Wait for non-blocking communication to complete. 
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Handles used for Non-blocking Comms 

• datatype  same as for blocking (MPI_Datatype or 

INTEGER). 

• communicator  same as for blocking (MPI_Comm or 

INTEGER). 

• request  MPI_Request or INTEGER. 

• A request handle is allocated when a communication is 

initiated. 
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Non-blocking Synchronous Send 

• C: 
 int MPI_Issend(void* buf, int count, 

       MPI_Datatype datatype, int dest, 

       int tag, MPI_Comm comm, 

       MPI_Request *request) 

 

 int MPI_Wait(MPI_Request *request, 

     MPI_Status *status) 

 

• Fortran: 
  MPI_ISSEND(buf, count, datatype, dest,  

        tag, comm, request, ierror) 

 

  MPI_WAIT(request, status, ierror) 
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Non-blocking Receive 

• C: 
 int MPI_Irecv(void* buf, int count, 

                MPI_Datatype datatype, int src, 

               int tag, MPI_Comm comm, 

               MPI_Request *request) 

 

 int MPI_Wait(MPI_Request *request, 

              MPI_Status *status) 

 

• Fortran: 
  MPI_IRECV(buf, count, datatype, src,  

       tag, comm, request, ierror) 

 

  MPI_WAIT(request, status, ierror) 
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Blocking and Non-Blocking 

• Send and receive can be blocking or non-blocking. 

• A blocking send can be used with a non-blocking receive, 

and vice-versa. 

• Non-blocking sends can use any mode - synchronous, 

buffered or standard 

• Synchronous mode affects completion, not initiation. 
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Communication Modes 

NON-BLOCKING OPERATION MPI CALL 

Standard send MPI_ISEND 

Synchronous send MPI_ISSEND 

Buffered send MPI_IBSEND 

Receive MPI_IRECV 
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Completion 

• Waiting versus Testing. 

• C: 

  int MPI_Wait(MPI_Request *request, 

               MPI_Status *status) 

  int MPI_Test(MPI_Request *request, 

               int *flag,  

               MPI_Status *status) 

 

• Fortran: 

  MPI_WAIT(handle, status, ierror) 

  

  MPI_TEST(handle, flag, status, ierror) 
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MPI_Request request; 

MPI_Status status; 

 

if (rank == 0) 

  { 

    MPI_Issend(sendarray, 10, MPI_INT, 1, tag, 

               MPI_COMM_WORLD, &request); 

    Do_something_else_while Issend_happens(); 

    // now wait for send to complete 

    MPI_Wait(&request, &status); 

  } 

else if (rank == 1) 

  { 

    MPI_Irecv(recvarray, 10, MPI_INT, 0, tag, 

                MPI_COMM_WORLD, &request); 

    Do_something_else_while Irecv_happens(); 

// now wait for receive to complete; 

    MPI_Wait(&request, &status); 

  } 
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Example (C) 



integer request 

integer, dimension(MPI_STATUS_SIZE) :: status 

 

if (rank == 0) then 

 

    CALL MPI_ISSEND(sendarray, 10, MPI_INTEGER, 1, tag, 

               MPI_COMM_WORLD, request, ierror) 

    CALL Do_something_else_while Issend_happens() 

    ! now wait for send to complete 

    CALL MPI_Wait(request, status, ierror) 

 

else if (rank == 1) then 

 

    CALL MPI_IRECV(recvarray, 10, MPI_INTEGER, 0, tag, 

                MPI_COMM_WORLD, request, ierror) 

    CALL Do_something_else_while Irecv_happens() 

    ! now wait for receive to complete 

    CALL MPI_Wait(request, status, ierror) 

 

endif 
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Example (Fortran) 



Multiple Communications 

• Test or wait for completion of one message. 

• Test or wait for completion of all messages. 

• Test or wait for completion of as many messages as 

possible. 
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Combined Send and Receive 

• Specify all send / receive arguments in one call 

- MPI implementation avoids deadlock 

- useful in simple pairwise communications patterns, but not as generally 

applicable as non-blocking 

 
int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype, 

                 int dest, int sendtag, 

                 void *recvbuf, int recvcount, MPI_Datatype recvtype, 

                 int source, int recvtag, 

                 MPI_Comm comm, MPI_Status *status); 

 

 
MPI_SENDRECV(sendbuf, sendcount, sendtype, dest,   sendtag, 

             recvbuf, recvcount, recvtype, source, recvtag, 

             comm, status, ierror) 
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Exercise 

  Rotating information around a ring 

• See Exercise 4 on the sheet 

• Arrange processes to communicate round a ring. 

• Each process stores a copy of its rank in an integer 

variable. 

• Each process communicates this value to its right 

neighbour, and receives a value from its left neighbour. 

• Each process computes the sum of all the values 

received. 

• Repeat for the number of processes involved and print out 

the sum stored at each process. 

23 



Possible solutions 

• Non-blocking send to forward neighbour 

- blocking receive from backward neighbour 

- wait for forward send to complete 

• Non-blocking receive from backward neighbour 

- blocking send to forward neighbour 

- wait for backward receive to complete 

 

• Non-blocking send to forward neighbour  

• Non-blocking receive from backward neighbour 

- wait for forward send to complete 

- wait for backward receive to complete 
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Notes 

• Your neighbours do not change 

- send to left, receive from right, send to left, receive from right, … 

 

• You do not alter the data you receive 

- receive it 

- add it  to you running total 

- pass the data unchanged along the ring 

 

• You must not access send or receive buffers until 

communications are complete 

- cannot read from a receive buffer until after a wait on irecv 

- cannot overwrite a send buffer until after a wait on issend 
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