
Non-Blocking

Communications

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

1

5
2

3

4

0 Communicator

Deadlock

4

Completion

• The mode of a communication determines when its

constituent operations complete.

- i.e. synchronous / asynchronous

• The form of an operation determines when the procedure

implementing that operation will return

- i.e. when control is returned to the user program

5

Blocking Operations

• Relate to when the operation has completed.

• Only return from the subroutine call when the operation

has completed.

• These are the routines you used thus far
- MPI_Ssend

- MPI_Recv

6

Non-Blocking Operations

• Return straight away and allow the sub-program to

continue to perform other work. At some later time the

sub-program can test or wait for the completion of the

non-blocking operation.

7

Beep!

Non-Blocking Operations

• All non-blocking operations should have matching wait

operations. Some systems cannot free resources until

wait has been called.

• A non-blocking operation immediately followed by a

matching wait is equivalent to a blocking operation.

• Non-blocking operations are not the same as sequential

subroutine calls as the operation continues after the call

has returned.

8

Non-Blocking Communications

• Separate communication into three phases:

• Initiate non-blocking communication.

• Do some work (perhaps involving other communications?)

• Wait for non-blocking communication to complete.

9

1

5
2

3

4

0 Communicator

Non-Blocking Send

10

1

5
2

3

4

0 Communicator

Non-Blocking Receive

11

Handles used for Non-blocking Comms

• datatype same as for blocking (MPI_Datatype or

INTEGER).

• communicator same as for blocking (MPI_Comm or

INTEGER).

• request MPI_Request or INTEGER.

• A request handle is allocated when a communication is

initiated.

12

Non-blocking Synchronous Send

• C:
 int MPI_Issend(void* buf, int count,

 MPI_Datatype datatype, int dest,

 int tag, MPI_Comm comm,

 MPI_Request *request)

 int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

• Fortran:
 MPI_ISSEND(buf, count, datatype, dest,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

13

Non-blocking Receive

• C:
 int MPI_Irecv(void* buf, int count,

 MPI_Datatype datatype, int src,

 int tag, MPI_Comm comm,

 MPI_Request *request)

 int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

• Fortran:
 MPI_IRECV(buf, count, datatype, src,

 tag, comm, request, ierror)

 MPI_WAIT(request, status, ierror)

14

Blocking and Non-Blocking

• Send and receive can be blocking or non-blocking.

• A blocking send can be used with a non-blocking receive,

and vice-versa.

• Non-blocking sends can use any mode - synchronous,

buffered or standard

• Synchronous mode affects completion, not initiation.

15

Communication Modes

NON-BLOCKING OPERATION MPI CALL

Standard send MPI_ISEND

Synchronous send MPI_ISSEND

Buffered send MPI_IBSEND

Receive MPI_IRECV

16

Completion

• Waiting versus Testing.

• C:

 int MPI_Wait(MPI_Request *request,

 MPI_Status *status)

 int MPI_Test(MPI_Request *request,

 int *flag,

 MPI_Status *status)

• Fortran:

 MPI_WAIT(handle, status, ierror)

 MPI_TEST(handle, flag, status, ierror)

17

MPI_Request request;

MPI_Status status;

if (rank == 0)

 {

 MPI_Issend(sendarray, 10, MPI_INT, 1, tag,

 MPI_COMM_WORLD, &request);

 Do_something_else_while Issend_happens();

 // now wait for send to complete

 MPI_Wait(&request, &status);

 }

else if (rank == 1)

 {

 MPI_Irecv(recvarray, 10, MPI_INT, 0, tag,

 MPI_COMM_WORLD, &request);

 Do_something_else_while Irecv_happens();

// now wait for receive to complete;

 MPI_Wait(&request, &status);

 }

18

Example (C)

integer request

integer, dimension(MPI_STATUS_SIZE) :: status

if (rank == 0) then

 CALL MPI_ISSEND(sendarray, 10, MPI_INTEGER, 1, tag,

 MPI_COMM_WORLD, request, ierror)

 CALL Do_something_else_while Issend_happens()

 ! now wait for send to complete

 CALL MPI_Wait(request, status, ierror)

else if (rank == 1) then

 CALL MPI_IRECV(recvarray, 10, MPI_INTEGER, 0, tag,

 MPI_COMM_WORLD, request, ierror)

 CALL Do_something_else_while Irecv_happens()

 ! now wait for receive to complete

 CALL MPI_Wait(request, status, ierror)

endif

19

Example (Fortran)

Multiple Communications

• Test or wait for completion of one message.

• Test or wait for completion of all messages.

• Test or wait for completion of as many messages as

possible.

20

 in

 in

 in

Process

Testing Multiple Non-Blocking Comms

21

Combined Send and Receive

• Specify all send / receive arguments in one call

- MPI implementation avoids deadlock

- useful in simple pairwise communications patterns, but not as generally

applicable as non-blocking

int MPI_Sendrecv(void *sendbuf, int sendcount, MPI_Datatype sendtype,

 int dest, int sendtag,

 void *recvbuf, int recvcount, MPI_Datatype recvtype,

 int source, int recvtag,

 MPI_Comm comm, MPI_Status *status);

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag,

 recvbuf, recvcount, recvtype, source, recvtag,

 comm, status, ierror)

22

Exercise

 Rotating information around a ring

• See Exercise 4 on the sheet

• Arrange processes to communicate round a ring.

• Each process stores a copy of its rank in an integer

variable.

• Each process communicates this value to its right

neighbour, and receives a value from its left neighbour.

• Each process computes the sum of all the values

received.

• Repeat for the number of processes involved and print out

the sum stored at each process.

23

Possible solutions

• Non-blocking send to forward neighbour

- blocking receive from backward neighbour

- wait for forward send to complete

• Non-blocking receive from backward neighbour

- blocking send to forward neighbour

- wait for backward receive to complete

• Non-blocking send to forward neighbour

• Non-blocking receive from backward neighbour

- wait for forward send to complete

- wait for backward receive to complete

24

Notes

• Your neighbours do not change

- send to left, receive from right, send to left, receive from right, …

• You do not alter the data you receive

- receive it

- add it to you running total

- pass the data unchanged along the ring

• You must not access send or receive buffers until

communications are complete

- cannot read from a receive buffer until after a wait on irecv

- cannot overwrite a send buffer until after a wait on issend

25

