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Overview 

• Lecture will cover 

- MPI portability 

- maintenance of serial code 

- general design 

- debugging 

- verification 
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MPI Portability 

• Potential deadlock 
• you may be assuming that MPI_Send is asynchronous 

• it often is buffered for small messages 

• but threshold can vary with implementation 

• a correct code should run if you replace all MPI_Send calls with 
MPI_Ssend 

 

• Buffer space 
• cannot assume that there will be space for MPI_Bsend 

• default buffer space is often zero! 

• be sure to use MPI_Buffer_Attach 

• some advice in MPI standard regarding required size 
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Data Sizes 

• Be careful of data sizes or layout 
- use runtime enquiry functions for Fortran types 

- be careful of compiler-dependent padding for structures 

 

• Changing precision 
- when changing from, say, float to double, must change all the 

MPI types from MPI_FLOAT to MPI_DOUBLE as well 

 

• Easiest to achieve with an include file 
- e.g. every routine includes precision.h 
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Changing Precision: C 

• Define a header file called, e.g. precision.h 
 

- typedef float RealNumber 

- #define MPI_REALNUMBER MPI_FLOAT 

 

• Include in every function 
- #include “precision.h” 

- ... 

- RealNumber x; 

- MPI_Routine(&x, MPI_REALNUMBER, ...); 

 

• Global change of precision now easy 
- edit 2 lines in one file: float->double, MPI_FLOAT->MPI_DOUBLE 
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Changing Precision: Fortran 

• Define a module called, e.g., precision 
 

- integer, parameter :: REALNUMBER=kind(1.0e0) 

- integer, parameter :: MPI_REALNUMBER = MPI_REAL 

 

• Use in every subroutine 
- use precision 

- ... 

- REAL(kind=REALNUMBER):: x 

- call MPI_ROUTINE(x, MPI_REALNUMBER, ...) 

 

• Global change of precision now easy 
- change 1.0e0 -> 1.0d0, MPI_REAL-> MPI_DOUBLE_PRECISION 
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Testing Portability 

• Run on more than one machine 
- assuming the implementations are different 

- many parallel clusters will use the same open-source MPI 

• e.g. OpenMPI or MPICH2 

• running on two different mid-sized machines may not be a good test 

 

• More than one implementation on same machine 
- e.g. run using both MPICH2 and OpenMPI on your laptop 

- very useful test, and can give interesting performance numbers 

 

• More than one compiler 
- user@cluster$ module switch mpich2-pgi mpich2-gcc 
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Serial Code 

• Adding MPI can destroy a code 

- would like to maintain a serial version 

- i.e. can compile and run identical code without an MPI library 

- not simply running MPI code with P=1! 

 

• Need to separate off communications routines 

- put them all in a separate file 

- provide a dummy library for the serial code 

- no explicit reference to MPI in main code 
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Example: Initialisation 

! parallel routine 

subroutine par_begin(size, procid) 

  implicit none 

  integer :: size, procid 

  include "mpif.h" 

  call mpi_init(ierr) 

  call mpi_comm_size(MPI_COMM_WORLD, size, ierr) 

  call mpi_comm_rank(MPI_COMM_WORLD, procid, ierr) 

  procid = procid + 1 

end subroutine par_begin 

 

! dummy routine for serial machine 

subroutine par_begin(size, procid) 

  implicit none 

  integer :: size, procid 

  size = 1 

  procid = 1 

end subroutine par_begin 
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Example: Global Sum 

! parallel routine 

subroutine par_dsum(dval) 

  implicit none 

  include "mpif.h" 

  double precision :: dval, dtmp 

  call mpi_allreduce(dval, dtmp, 1, MPI_DOUBLE_PRECISION, & 

                     MPI_SUM, comm, ierr) 

  dval = dtmp 

end subroutine par_dsum 

 

! dummy routine for serial machine 

subroutine par_dsum(dval) 

  implicit none 

  double precision dval 

end subroutine par_dsum 
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Example Makefile 

SEQSRC= \ 

 demparams.f90 demrand.f90 demcoord.f90 demhalo.f90 \ 

 demforce.f90 demlink.f90 demcell.f90 dempos.f90 

demons.f90 

 

MPISRC= \ 

 demparallel.f90 \ 

 demcomms.f90 

 

FAKESRC= \ 

 demfakepar.f90 \ 

 demfakecomms.f90 

 

#PARSRC=$(FAKESRC) 

PARSRC=$(MPISRC) 
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Advantages of Comms Library 

• Can compile serial program from same source 

- makes parallel code more readable 

 

• Enables code to be ported to other libraries 

- more efficient but less versatile routines may exist 

- e.g. Cray-specific SHMEM library 

- can even choose to only port a subset of the routines 

 

• Library can be optimised for different MPIs 

- e.g. choose the fastest send (Ssend, Send, Bsend?) 
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Design 

• Separate the communications into a library 
 

• Make parallel code similar as possible to serial 

- e.g. use of halos in case study 

- could use the same update routine in serial and parallel 

   serial:   update(new, old, M,  N ); 

   parallel: update(new, old, MP, NP); 

- may have a large impact on the design of your serial code 

 

• Don’t try and be too clever 

- don’t agonise whether one more halo swap is really necessary 

- just do it for the sake of robustness 
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General Considerations 

• Compute everything everywhere 
- e.g. use routines such as Allreduce 

- perhaps the value only really needs to be know on the master 

• but using Allreduce makes things simpler 

• no serious performance implications 

• Often easiest to make P a compile-time constant 
- may not seem elegant but can make coding much easier 

• e.g. definition of array bounds 

- put definition in an include file 

- a clever Makefile can reduce the need for recompilation 

• only recompile routines that define arrays rather than just use them 

• pass array bounds as arguments to all other routines 
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Debugging 

• Parallel debugging can be hard 

• Don’t assume it’s a parallel bug! 
- run the serial code first 

- then the parallel code with P=1 

- then on a small number of processes … 

• Writing output to separate files can be useful 
- e.g. log.00, log.01, log.02, …. for ranks 0, 1, 2, ... 

- need some way easily to switch this on and off 

• Some parallel debuggers exist 
- Totalview is the leader across all largest platforms 

- Allinea DDT is becoming more common across the board 
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General Debugging 

• People seem to write programs DELIBERATELY to make 

them impossible to debug! 

- my favourite: the silent program 

- “my program doesn’t work” 

$ mprun –np 6 ./program.exe 

$ SEGV core dumped 

- where did this crash? 

- did it run for 1 second? 1 hour? in a batch job this may not be 

obvious 

- did it even start at all? 

Why don’t people write to the screen!!! 
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Program should output like this 

$ mprun –np 6 ./program.exe 

Program running on 6 processes 

Reading input file input.dat … 

… done 

Broadcasting data … 

… done 

rank 0: x = 3 

rank 1: x = 5 

etc etc 

Starting iterative loop 

iteration 100 

iteration 200 

finished after 236 iterations 

writing output file output.dat … 

… done 

rank 0: finished 

rank 1: finished 

… 

Program finished 
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Typical mistakes 

• Don’t write raw numbers to the screen! 
- what does this mean? 

$ mprun –np 6 ./program.exe 

1 3 5.6 

3 9 8.37 

- programmer has written 
$ printf(“%d %d %f\n”, rank, j, x); 

$ write(*,*) rank, j, x 

• Takes an extra 5 seconds to type: 
$ printf(“rank, j, x: %d %d %f\n”, rank, j, x); 

$ write(*,*) ‘rank, j, x: ‘, rank, j, x 

- and will save you HOURS of debugging time 

• Why oh why do people write raw numbers?!?! 
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Debugging walkthrough 

• My case study code gives the wrong answer 
 

• Stages: 

- read data in 

- distribute to processes 

- update many times 

• requiring halo swaps 

- collect data back 

- write data out 

 

• Final stage shows the error 

- but where did it first go wrong? 
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Where is it going wrong? 

• On input? 

• On distribute? 

• On update? 

- on halo swaps? 

- on left/right swaps? 

- on up/down swaps? 

• On collection? 

• On output? 

 

• All these can be checked with simple tests 
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Common mistake 

• I changed something 

- and it now works (but I don’t know why) 

 

• All is OK! 

 

• No! 

- there is a bug 

- you MUST find it 

- if not, it will come back later to bite you HARD 

 

• Debugging is an experimental science 
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Verification: Is My Code Working? 

• Should the output be identical for any P? 
- very hard to accomplish in practice due to rounding errors 

• may have to look hard to see differences in the last few digits 

- typically, results vary slightly with number of processes 

- need some way of quantifying the differences from serial code 

- and some definition of “acceptable” 

• What about the same code for fixed P? 
- identical output for two runs on same number of processes? 

- should be achievable with some care 

• not in specific cases like dynamic task farms 

• possible problems with global sums 

• MPI doesn’t require reproducibility, but most implementations are 

- without this, debugging is almost impossible 
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Parallelisation 

• Some parallel approaches may be simple 

- but not necessarily optimal for performance 

- case study example is very simple due to 1D decomposition 

• but not particularly efficient for large P 

- often need to consider what is the realistic range of P 

 

• Some people write incredibly complicated code 

- step back and ask: what do I actually want to do? 

- is there an existing MPI routine or collective communication? 

- should I reconsider my approach if it prohibits me from using 

existing routines, even if it is not quite so efficient? 
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Optimisation 

• Keep running your code 

- on a number of input data sets 

- with a range of MPI processes 

 

• If scaling is poor 

- find out what parallel routines are the bottlenecks 

- again, much easier with a separate comms library 

 

• If performance is poor 

- work on the serial code 

- return to parallel issues later on 
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Conclusions 

• Run on a variety of machines 

 

• Keep it simple 

 

• Maintain a serial version 

 

• Don’t assume all bugs are parallel bugs 

 

• Find a debugger you like (good luck to you) 
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