
Message Passing

Programming
Designing MPI Applications

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

3

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Overview

• Lecture will cover

- MPI portability

- maintenance of serial code

- general design

- debugging

- verification

4

MPI Portability

• Potential deadlock
• you may be assuming that MPI_Send is asynchronous

• it often is buffered for small messages

• but threshold can vary with implementation

• a correct code should run if you replace all MPI_Send calls with
MPI_Ssend

• Buffer space
• cannot assume that there will be space for MPI_Bsend

• default buffer space is often zero!

• be sure to use MPI_Buffer_Attach

• some advice in MPI standard regarding required size

5

Data Sizes

• Be careful of data sizes or layout
- use runtime enquiry functions for Fortran types

- be careful of compiler-dependent padding for structures

• Changing precision
- when changing from, say, float to double, must change all the

MPI types from MPI_FLOAT to MPI_DOUBLE as well

• Easiest to achieve with an include file
- e.g. every routine includes precision.h

6

Changing Precision: C

• Define a header file called, e.g. precision.h

- typedef float RealNumber

- #define MPI_REALNUMBER MPI_FLOAT

• Include in every function
- #include “precision.h”

- ...

- RealNumber x;

- MPI_Routine(&x, MPI_REALNUMBER, ...);

• Global change of precision now easy
- edit 2 lines in one file: float->double, MPI_FLOAT->MPI_DOUBLE

7

Changing Precision: Fortran

• Define a module called, e.g., precision

- integer, parameter :: REALNUMBER=kind(1.0e0)

- integer, parameter :: MPI_REALNUMBER = MPI_REAL

• Use in every subroutine
- use precision

- ...

- REAL(kind=REALNUMBER):: x

- call MPI_ROUTINE(x, MPI_REALNUMBER, ...)

• Global change of precision now easy
- change 1.0e0 -> 1.0d0, MPI_REAL-> MPI_DOUBLE_PRECISION

8

Testing Portability

• Run on more than one machine
- assuming the implementations are different

- many parallel clusters will use the same open-source MPI

• e.g. OpenMPI or MPICH2

• running on two different mid-sized machines may not be a good test

• More than one implementation on same machine
- e.g. run using both MPICH2 and OpenMPI on your laptop

- very useful test, and can give interesting performance numbers

• More than one compiler
- user@cluster$ module switch mpich2-pgi mpich2-gcc

9

Serial Code

• Adding MPI can destroy a code

- would like to maintain a serial version

- i.e. can compile and run identical code without an MPI library

- not simply running MPI code with P=1!

• Need to separate off communications routines

- put them all in a separate file

- provide a dummy library for the serial code

- no explicit reference to MPI in main code

10

Example: Initialisation

! parallel routine

subroutine par_begin(size, procid)

 implicit none

 integer :: size, procid

 include "mpif.h"

 call mpi_init(ierr)

 call mpi_comm_size(MPI_COMM_WORLD, size, ierr)

 call mpi_comm_rank(MPI_COMM_WORLD, procid, ierr)

 procid = procid + 1

end subroutine par_begin

! dummy routine for serial machine

subroutine par_begin(size, procid)

 implicit none

 integer :: size, procid

 size = 1

 procid = 1

end subroutine par_begin

11

Example: Global Sum

! parallel routine

subroutine par_dsum(dval)

 implicit none

 include "mpif.h"

 double precision :: dval, dtmp

 call mpi_allreduce(dval, dtmp, 1, MPI_DOUBLE_PRECISION, &

 MPI_SUM, comm, ierr)

 dval = dtmp

end subroutine par_dsum

! dummy routine for serial machine

subroutine par_dsum(dval)

 implicit none

 double precision dval

end subroutine par_dsum

12

Example Makefile

SEQSRC= \

 demparams.f90 demrand.f90 demcoord.f90 demhalo.f90 \

 demforce.f90 demlink.f90 demcell.f90 dempos.f90

demons.f90

MPISRC= \

 demparallel.f90 \

 demcomms.f90

FAKESRC= \

 demfakepar.f90 \

 demfakecomms.f90

#PARSRC=$(FAKESRC)

PARSRC=$(MPISRC)

13

Advantages of Comms Library

• Can compile serial program from same source

- makes parallel code more readable

• Enables code to be ported to other libraries

- more efficient but less versatile routines may exist

- e.g. Cray-specific SHMEM library

- can even choose to only port a subset of the routines

• Library can be optimised for different MPIs

- e.g. choose the fastest send (Ssend, Send, Bsend?)

14

Design

• Separate the communications into a library

• Make parallel code similar as possible to serial

- e.g. use of halos in case study

- could use the same update routine in serial and parallel

 serial: update(new, old, M, N);

 parallel: update(new, old, MP, NP);

- may have a large impact on the design of your serial code

• Don’t try and be too clever

- don’t agonise whether one more halo swap is really necessary

- just do it for the sake of robustness

15

General Considerations

• Compute everything everywhere
- e.g. use routines such as Allreduce

- perhaps the value only really needs to be know on the master

• but using Allreduce makes things simpler

• no serious performance implications

• Often easiest to make P a compile-time constant
- may not seem elegant but can make coding much easier

• e.g. definition of array bounds

- put definition in an include file

- a clever Makefile can reduce the need for recompilation

• only recompile routines that define arrays rather than just use them

• pass array bounds as arguments to all other routines

16

Debugging

• Parallel debugging can be hard

• Don’t assume it’s a parallel bug!
- run the serial code first

- then the parallel code with P=1

- then on a small number of processes …

• Writing output to separate files can be useful
- e.g. log.00, log.01, log.02, …. for ranks 0, 1, 2, ...

- need some way easily to switch this on and off

• Some parallel debuggers exist
- Totalview is the leader across all largest platforms

- Allinea DDT is becoming more common across the board

17

General Debugging

• People seem to write programs DELIBERATELY to make

them impossible to debug!

- my favourite: the silent program

- “my program doesn’t work”

$ mprun –np 6 ./program.exe

$ SEGV core dumped

- where did this crash?

- did it run for 1 second? 1 hour? in a batch job this may not be

obvious

- did it even start at all?

Why don’t people write to the screen!!!

18

Program should output like this

$ mprun –np 6 ./program.exe

Program running on 6 processes

Reading input file input.dat …

… done

Broadcasting data …

… done

rank 0: x = 3

rank 1: x = 5

etc etc

Starting iterative loop

iteration 100

iteration 200

finished after 236 iterations

writing output file output.dat …

… done

rank 0: finished

rank 1: finished

…

Program finished

19

Typical mistakes

• Don’t write raw numbers to the screen!
- what does this mean?

$ mprun –np 6 ./program.exe

1 3 5.6

3 9 8.37

- programmer has written
$ printf(“%d %d %f\n”, rank, j, x);

$ write(*,*) rank, j, x

• Takes an extra 5 seconds to type:
$ printf(“rank, j, x: %d %d %f\n”, rank, j, x);

$ write(*,*) ‘rank, j, x: ‘, rank, j, x

- and will save you HOURS of debugging time

• Why oh why do people write raw numbers?!?!

20

Debugging walkthrough

• My case study code gives the wrong answer

• Stages:

- read data in

- distribute to processes

- update many times

• requiring halo swaps

- collect data back

- write data out

• Final stage shows the error

- but where did it first go wrong?

21

Where is it going wrong?

• On input?

• On distribute?

• On update?

- on halo swaps?

- on left/right swaps?

- on up/down swaps?

• On collection?

• On output?

• All these can be checked with simple tests

22

Common mistake

• I changed something

- and it now works (but I don’t know why)

• All is OK!

• No!

- there is a bug

- you MUST find it

- if not, it will come back later to bite you HARD

• Debugging is an experimental science

23

Verification: Is My Code Working?

• Should the output be identical for any P?
- very hard to accomplish in practice due to rounding errors

• may have to look hard to see differences in the last few digits

- typically, results vary slightly with number of processes

- need some way of quantifying the differences from serial code

- and some definition of “acceptable”

• What about the same code for fixed P?
- identical output for two runs on same number of processes?

- should be achievable with some care

• not in specific cases like dynamic task farms

• possible problems with global sums

• MPI doesn’t require reproducibility, but most implementations are

- without this, debugging is almost impossible

24

Parallelisation

• Some parallel approaches may be simple

- but not necessarily optimal for performance

- case study example is very simple due to 1D decomposition

• but not particularly efficient for large P

- often need to consider what is the realistic range of P

• Some people write incredibly complicated code

- step back and ask: what do I actually want to do?

- is there an existing MPI routine or collective communication?

- should I reconsider my approach if it prohibits me from using

existing routines, even if it is not quite so efficient?

25

Optimisation

• Keep running your code

- on a number of input data sets

- with a range of MPI processes

• If scaling is poor

- find out what parallel routines are the bottlenecks

- again, much easier with a separate comms library

• If performance is poor

- work on the serial code

- return to parallel issues later on

26

Conclusions

• Run on a variety of machines

• Keep it simple

• Maintain a serial version

• Don’t assume all bugs are parallel bugs

• Find a debugger you like (good luck to you)

27

