
Introduction to OpenMP
Recap



Conceptual model

P P PP P P

Interconnect

Memory



Real hardware example

Memory

P P

L1 L1

L2

P P

L1 L1

L2

Memory



Threads (cont.)

PC PC PCPrivate data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3



Parallel region

Sequential part

Sequential part

Sequential part

Parallel region

Parallel region



Shared and private data

• Inside a parallel region, variables can either be shared or private.

• All threads see the same copy of shared variables. 

• All threads can read or write shared variables.

• Each thread has its own copy of private variables: these are invisible 

to other threads.

• A private variable can only be read or written by its own thread.



Reductions
• A reduction produces a single value from associative operations 

such as addition, multiplication, max, min, and, or. 

• Would like each thread to reduce into a private copy, then reduce all 
these to give final result.

• Use REDUCTION clause:

Fortran: REDUCTION(op:list)

C/C++: reduction(op:list)

• Can have reduction arrays in Fortran, but not in C/C++ 



Parallel do/for loops (cont)

Syntax:
Fortran:

!$OMP DO [clauses]

do loop

[ !$OMP END DO ]

C/C++:       

#pragma omp for [clauses]

for loop



Parallel do loops (example)

Example:

!$OMP PARALLEL

!$OMP DO 

do i=1,n

b(i) = (a(i)-a(i-1))*0.5

end do 

!$OMP END DO

!$OMP END PARALLEL



SINGLE directive (cont)
Example: 

#pragma omp parallel

{

setup(x);

#pragma omp single

{

input(y); 

}

work(x,y); 

}



MASTER directive (cont)
Syntax: 

Fortran:

!$OMP MASTER

block 

!$OMP END MASTER

C/C++:

#pragma omp master

structured block



Parallel sections (cont)
Example:

!$OMP PARALLEL 

!$OMP SECTIONS 

!$OMP SECTION

call init(x)

!$OMP SECTION

call init(y)

!$OMP SECTION

call init(z)

!$OMP END SECTIONS

!$OMP END PARALLEL


