

 1

Divide and Conquer with a process pool

1 Introduction

In this practical we are going to look at parallelising a common sorting algorithm, mergesort, with our aim being

to sort a list of random numbers in parallel. As we discussed in the divide and conquer lecture, the sort routine

will split the data in two, allocate half to another process and the rest to itself and both will recursively call sort

again. Once the data size reaches a specific threshold (the serial threshold) then the sequential quicksort

algorithm is used to sort a small number of elements. Then the resulting, sorted, values are then sent back to

the caller and both streams are merged before being returned back to the process or iteration that called this

one. Merge sort is a prime example of divide and conquer from the algorithm strategy space.

We will be using a process pool, which is an implementation of the master/worker pattern from the

implementation strategy space. Basically, there is one master UE (MPI process) and many workers. The master

maintains a pool of free workers and on start-up will allocate initial (randomly generated) unsorted values to

one of these. Each worker, as it splits its data will signal the master to activate a new worker process and the

master will return the process id of this worker. When a worker starts it can gain access to the id of the process

that signalled to create it (its parent, which will be the master or another worker.) These IDs can be used as the

basis for point to point MPI communication and the sharing of data.

2 Provided code

You are provided with a skeleton implementation that you will need to flesh out to parallelise, a process pool

code (implemented by the master/worker pattern), random number generator and quick sort implementation

(for Fortran programmers, in C we use the standard library quicksort routine.) You can treat the process pool as

a black box and provided here is a summary of its C API, with the Fortran API being similar. Most of the interaction

with the process pool is already in the skeleton code, so you shouldn’t need to worry about it too much.

Function Description

int processPoolInit() Initialises the process pool (1=worker, 2=master)

void processPoolFinalise() Finalises and process pool (called from all)

int masterPoll() Master polls to determine whether to continue or not

int workerSleep() Worker waits for new task (1=new task, 0=stop)

int startWorkerProcess() Starts a new worker task and returns the rank of this

int getCommandData() Retrieves the rank of the task created this one

void shutdownPool() Called by anyone to shut down the pool

Typically, when you run this code you want to ensure that there are more processes (in the pool) than you will

need. For the default problem size (set by the command line arguments in the submission script) about 20 should

be sufficient – so running on a single node of ARCHER with 24 cores is fine.

 2

3 Parallel divide and conquer

We will be using MPI for this practical, if you are not so familiar or a bit rusty with this then the course materials

of a recent ARCHER course at http://www.archer.ac.uk/training/course-material/2018/07/mpi-epcc/index.php

are a good reference.

You are concentrating on the mergesort.c (or mergesort.F90) file, which contain a skeleton implementation and

it is your task to complete it. The code has been commented to give you an idea of aspects to consider and where

to place these in the code. You will need to complete the following functionality:

• The sending of the entire unsorted data, from the master to the first worker it creates. This

has been started for you in the startMergeSort routine which starts a worker from the

process pool and obtains its id. It is up to you to consider the communication to use.

• The final receiving of data to the master after the workers have completed sorting the data.

This is in the main routine (mergesort_master in the Fortran code.)

• In the workerCode routine, a newly activated worker will need to receive the data (and

amount of data) to sort from its parent and then send back the sorted data (of the same

size) after the sort routine has completed.

• In the sort function you will need to determine the pivot, split the data, send half to the

newly created worker and recursively call sort with the remaining half. Once the sort routine

has completed and the worker has returned its sorted data then these data values should be

combined with a call to the merge routine.

• Compile and run it! As we said before, you will need to ensure that there are more processes

available (in the pool) than will be needed, I would suggest running with at least a full node

of ARCHER. The default setting in the submission script (100 data elements, argument one;

serial threshold of 10 elements, argument two; and to display both the sorted and unsorted

data, argument three) requires 17 UEs (16 workers and a master) so a single node is fine for

this problem size

By looking at the output (the sorted list of numbers), it should be fairly clear whether your parallelisation is

working or not!

4 Overhead of the process pool and task granularity

The default setting, of 100 data elements and a serial threshold of 10 elements will require 16 workers and is

likely to be rather inefficient, as each worker simply hasn’t enough data to offset the cost of worker creation and

communication. A key question is how does the amount of useful work (computation) compare against the

overhead of parallelism.

1. Firstly, let’s add in a metric for the cost of a task starting a worker (when it divides the data

in half.) The start_task_time global variable is already declared, so pop some timing (using

MPI_Wtime) around the startWorkerProcess call of the sort function and update this global

variable using that timing. As the task blocks until the process pool responds with the newly

activated worker rank, it is possible that this creation of workers might incur significant

overhead.

http://www.archer.ac.uk/training/course-material/2018/07/mpi-epcc/index.php

 3

2. Each task does quite a lot of communication, sending values to its children and parent. You

will see two additional global variables, calc_time and comm_time, hook up timings at

places in your code that add to the values held in these.

3. For the overall run we want to know the minimum, maximum and average values across

UEs for each of the three metrics you have coded. In the main function, just before the code

exits, I suggest using MPI_Reduce calls with the MIN, MAX and SUM operators. You also

need to be a bit careful as some UEs won’t calculate any values for these metrics (for

instance the process pool master or unused workers.) Therefore, to calculate the average I

suggest instead of dividing the sum by the number of UEs, using a further reduction to sum

up the processes that contribute a non-zero value to the metric.

Run the code with your new metrics and have a look at the timings produced. How does the amount of

computation (the useful work) compare against the overhead (worker creation and communication)?

1. There is also a calculate_num_workers.py Python script supplied, this will report the number

of workers required for a specific data size an serial threshold. For instance python

calculate_num_workers.py 100 10 will return the number of workers for the default

problem size of 100 elements and a serial threshold of 10. Remember for the number of

cores needed you will need to add an extra one onto to the number of workers to take

account of the master UE.

2. In the submission script there are three arguments provided to the mergesort application,

the first is the number of data elements (100 initially), the second is the serial threshold (10

initially) and the third is whether to display the unsorted and sorted data (1 initially.)

Experiment with different data size, serial threshold and number of workers to see how

these impact the metric values reported. IMPORTANT: As you increase the size of the data

we suggest changing the display argument (the third argument) from 1 to 0. This will save

lots of data being displayed, as once you are confident that your parallelisation is working

correctly the actual data values are not that interesting!

